2205.07417v2 [cs.CV] 21 Sep 2022

arxXiv

Transformers in 3D Point Clouds: A Survey

Dening Lu, Qian Xie, Minggiang Wei, Senior Member, IEEE, Kyle (Yilin) Gao, Student Member, IEEE,
Linlin Xu, Member, IEEE, and Jonathan Li, Senior Member, IEEE

Abstract—Transformers have been at the heart of the Natural Language Processing (NLP) and Computer Vision (CV) revolutions. The
significant success in NLP and CV inspired exploring the use of Transformers in point cloud processing. However, how do Transformers
cope with the irregularity and unordered nature of point clouds? How suitable are Transformers for different 3D representations (e.g.,
point- or voxel-based)? How competent are Transformers for various 3D processing tasks? As of now, there is still no systematic survey
of the research on these issues. For the first time, we provided a comprehensive overview of increasingly popular Transformers for 3D
point cloud analysis. We start by introducing the theory of the Transformer architecture and reviewing its applications in 2D/3D fields.
Then, we present three different taxonomies (i.e., implementation-, data representation-, and task-based), which can classify current
Transformer-based methods from multiple perspectives. Furthermore, we present the results of an investigation of the variants and
improvements of the self-attention mechanism in 3D. To demonstrate the superiority of Transformers in point cloud analysis, we present
comprehensive comparisons of various Transformer-based methods for classification, segmentation, and object detection. Finally, we

suggest three potential research directions, providing benefit references for the development of 3D Transformers.

Index Terms—Transformer, point cloud analysis, self-attention mechanism, deep neural networks, 3D vision.

1 INTRODUCTION

RANSFORMERS, in encoder and/or decoder configura-
T tions, are now the dominant neural architecture in NLP.
In view of the impressive ability to model long-range depen-
dencies, they have been successfully adapted to the field of
CV [1]-[3] for autonomous driving, visual computing, in-
telligent monitoring, and industrial inspection. A standard
Transformer encoder generally consists of six main com-
ponents (Fig. [I): 1) input (word) embedding; 2) positional
encoding; 3) self-attention mechanism; 4) normalization; 5)
feed-forward operation; and 6) skip connection. As for the
Transformer decoder, it is typically designed to mirror the
Transformer encoder, except it additionally takes as input
latent features from the Transformer-encoder. However, for
3D point cloud applications, decoders can be specifically de-
signed (i.e. not be a pure Transformer) for dense prediction
tasks such as part segmentation and semantic segmentation
in 3D point cloud analysis. Researchers in 3D computer vi-
sion often adopt PointNet++ [4] or convolutional backbones
with Transformer blocks incorporated therein.

To describe in more detail, let P = {p1,p2,p3,...,PN} €
RN*D be an input point cloud. D is the feature dimension
of the input point. Typically in literature, “D equals to three”
means only the 3D coordinate of each point is taken as
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input, while “D equals to six” means both the 3D coordinate
and normal vector are taken as input. The details of the
aforementioned encoder components are as follows.

Firstly, for the input embedding, P is projected to a high-
dimension feature space which can facilitate subsequent
learning. This can be achieved by using a Multi-Layer
Perception (MLP) or other feature extraction backbone net-
works like PointNet [5]. We denote the embedded feature
map as X € RNM*Y. Secondly, the positional encoding is
used to either capture the geometrical information, or the
relative ordering of input tokens/points if relevant. Note
that the Transformer is order-agnostic without this step,
which is not an issue for point clouds, since they are nat-
urally unordered. Nonetheless, the frequency-based posi-
tional encoding can be used by mapping spatial coordinates
with sine and cosine functions [6]. Moreover, there also exist
learned position encoding schemes with a trainable param-
eter matrix B [7], [8], which are more adaptive to different
input data. These positional encodings of spatial coordinates
have shown to benefit the learning of features at finer scales
[9]. Thirdly, the core component of the Transformer encoder
is the self-attention mechanism. If a sine/cosine-based po-
sitional encoding is used, it is typically added to the em-
bedded feature map X. This feature map is then projected
to three different feature spaces using three learnable weight
matrices W € RE*Ye W), € RO*Cx Wy, € REXC, where
typically Cx equals to Cq. In this way, Query, Key, and
Value matrices can be formulated as:

Query = XWy,
Key =XWk, @
Value = XWy.

Given the Query, Key, and Value matrices, an attention
map is formulated as:
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Fig. 1. lllustration of the Transformer encoder architecture.

where @, K,V denote the Query, Key, and Value ma-
trices respectively. The attention map of size of N x N
measures the similarity of any two input points. It is also
called the similarity matrix. Then the attention map and the
matrix Value are multiplied to generate the new feature
map F, of the same size as X. Each feature vector in F'
is obtained by computing a weighted sum of all input
features. It is therefore able to establish connections with
all input features. When inputs are global, this process
allows for the Transformer to easily learn global features.
Therefore, compared with convolutional neural networks
(CNNSs), Transformers are better at long-range dependency
modeling. Additionally, compared with MLPs, Transform-
ers also have two significant advantages. One is that the
attention map in the Transformer is dynamic depending
on the input during the inference, which is more adaptive
than MLPs with fixed weight matrices. Another is that the
self-attention mechanism is permutation-equivariant, while
for MLPs, the order of input and output is encoded in the
weight matrix. Fourthly, a normalization layer is placed
before and after the feed-forward layer, performing stan-
dardization and normalization on feature maps. There are
two kinds of normalization methods used in this layer:
LayerNormalization and BatchNormalization. The former is
commonly used in NLP, while the latter is commonly used
in CV like 2D or 3D data processing. Fifthly, a feed-forward
layer is added to enhance the representation of attention
features. Generally, it consists of two fully-connection layers
with a RELU function. Finally, a skip connection is used
between the input and output of the self-attention module.
There have been many self-attention variants using various
skip connection forms [10]-[12], which we present in more
details in Sec.[5l

Note that there are also some 3D Transformers that are
not exactly comprised of these six components. For example,
early 3D Transformer networks like Point Attention (P-A)
and Attentional ShapeContextNet did not have the
positional encoding module. They focused on applying the
self-attention mechanism to 3D point clouds. Point Cloud
Transformer (PCT) proposed a neighbor embedding
mechanism achieved by EdgeConv [13]. This mechanism
incorporates the positional encoding into the input em-
bedding module. Since the self-attention mechanism is the
core component of Transformers, we also classify meth-
ods mainly utilizing the self-attention mechanism for point
cloud processing into the 3D Transformer family for this
survey.

Recently, Transformer models have been introduced to
image processing widely, and achieved impressive results

6) Skip connection Output

____________

for various tasks, such as image segmentation [14], object
detection and tracking [16]. Vision Transformer (ViT)
first proposed a pure Transformer network for image
classification. It achieved excellent performance compared
with the state-of-the-art convolutional networks. Based on
ViT, there were numerous Transformer variants proposed
for image classification [18]-[21], segmentation [22]-[24],
object detection [15], [19], [25], [26], and other vision tasks.

Moreover, various innovations on Transformer-based archi-
tectures were proposed, such as convolutions+Transformers
[20], multi-scale Transformers , and self-supervised
Transformers [27]. There also have been several surveys [1],
[28]-[30] proposed to categorize all involved 2D Transform-
ers into multiple groups. The taxonomies they used were
algorithm architecture-based taxonomy and task-based tax-
onomy.
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Fig. 2. Applications of Transformers in 3D point clouds.

Due to the remarkable global feature learning ability
and permutation-equivariant operations, Transformer archi-
tectures are intrinsically suited for point cloud processing
and analysis. A number of 3D Transformer backbones were
proposed (see Fig. 2) for point cloud classification & seg-
mentation [7], [12], [34], [37], [69], [70], detection [35], [54],
tracking [56]-[58], registration [59]-[63]], [71], [72], comple-
tion [50], [66]-[68], [73]l, [74], to name a few. Moreover, 3D

Transformer networks have also been used for various prac-
tical applications, such as structure monitoring , medical
data analysis [37], and autonomous driving [76], [77]. There-
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fore, it is necessary to conduct a systematic survey for 3D
Transformers. Recently, several 3D Transformer/Attention-
related reviews have been published. For instance, Khan
et al. [29] reviewed the vision Transformers according to
the architecture- and task-based taxonomies. However, it
mainly focused on Transformers on 2D image analysis,
and only provided a brief introduction to 3D Transformer
networks. Qiu et al. [78] introduced several variants of
the 3D self-attention mechanism, and conducted a detailed
comparison and analysis for them on SUN RGBD [79] and
ScanNetV2 datasets [80]. However, a comprehensive survey
of Transformer models in 3D point clouds has not been
conducted so far, which we hope to provide with this paper.

We designed three different taxonomies which are
shown in Fig. 1) implementation-based taxonomy; 2)
data representation-based taxonomy; 3) task-based taxon-
omy. In this way, we were able to classify and analyze
Transformer networks from multiple perspectives. We note
that these taxonomies are not mutually exclusive. Taking
Point Transformer (PT) [7] as an example: 1) in terms of
the Transformer implementation, it belongs to the local
Transformer category, operated in the local neighborhood
of the target point cloud; 2) in terms of the data represen-
tation, it belongs to the multi-scale point-based Transformer
category, extracting the geometrical and semantic features
hierarchically; 3) in terms of the 3D task, it is designed for
point cloud classification and segmentation. Additionally,
we also conducted an investigation of different self-attention
variants in 3D point cloud processing. We expect this clas-
sification to provide helpful references for the development
of Transformer-based networks.

The major contributions of this survey can be sum-
marised as follows:

o This is the first effort, to the best of our knowledge,
that focused on comprehensively covering Trans-
formers in point clouds for 3D vision tasks.

o This work investigates a series of self-attention vari-
ants in point cloud analysis. It introduced novel self-
attention mechanisms aiming to improve the perfor-
mance and efficiency of 3D Transformers.

e This work provides comparisons and analyses of
Transformer-based methods on several 3D vision
tasks, including 3D shape classification and 3D
shape/semantic segmentation, and 3D object detec-
tion on several public benchmarks.

o This work introduces the readers to the SOTA meth-
ods as well as to the recent progress of Transformers-
based methods for point cloud processing.

The core of this paper is organized into six sections not
counting the Introduction. Sec. and [ introduce the
three different taxonomies for 3D Transformer classification.
Sec. | reviews different self-attention variants proposed
in literature to improve the performance of Transformers.
Sec. [f] provides a comparison and analysis of surveyed 3D
Transformer networks. Lastly, Sec.[/]summarizes our survey
work, and points out three potential future directions for 3D
Transformers.

2 TRANSFORMER IMPLEMENTATION

In this section, we broadly categorize Transformers in 3D
point clouds from multiple perspectives. Firstly, in terms
of the operating scale, 3D Transformers can be divided
into two parts: Global Transformers and Local Transformers
(Sec. .I). The operating scale represents the scope of the
algorithm with respect to the point cloud, such as the global
domain or the local domain. Secondly, in terms of the
operating space, 3D Transformers can be divided into Point-
wise Transformers and Channel-wise Transformers (Sec.
[2.2). The operating scale represents the dimension in which
the algorithm is operated, such as the spatial dimension
or the channel dimension. Lastly, we provide a review of
efficient Transformer networks designed for computational
footprint reduction (Sec2.3).

2.1 Operating Scale

According to the operating scale, 3D Transformers can be
divided into two parts: Global Transformers and Local
Transformers. The former denotes that Transformer blocks
are applied to all the input points for global feature extrac-
tion, while the latter denotes that Transformer blocks are
applied in a local patch for local feature extraction.

2.1.1 Global Transformers

There are many existing works [8], [10]-[12], [31], [33],
[371, [38], [52], [81] focusing on global Transformer. For a
global Transformer block, each new output feature in F' can
establish connections with all input features X. It is both
equivariant with respect to permutations of the input and
capable of learning the global context features [12].

Following PointNet [5], PCT, as a pure global Trans-
former network, was proposed in [12]. Taking the 3D coordi-
nates as input P, PCT first proposed a neighbor-embedding
architecture to map the point cloud into a high-dimensional
feature space. This operation can also incorporate local
information into the embedded features. Then these features
were fed into four stacked global Transformer blocks to
learn semantic information. The global features were finally
extracted by a global Max and Average (MA) pooling for
classification and segmentation. Moreover, PCT’s improved
self-attention module, named Offset-Attention, was inspired
by the Laplacian matrix in Graph convolution networks [82].
We detailed the structure of the Offset-Attention module
in Sec. It is able to sharpen the attention weights and
reduce the influence of noise. The state-of-the-art perfor-
mance of PCT on various tasks proved that Transformers
are suitable for 3D point cloud processing.

In contrast to the single scale of PCT, a Cross-Level
Cross-Scale Cross-Attention Transformer network was pro-
posed in [31], named 3CROSSNet. Firstly, it performed Far-
thest Point Sampling (FPS) algorithm [4] on the raw input
point cloud to obtain three point subsets with different reso-
lutions. Secondly, it utilized stacked multiple shared Multi-
Layer Perception (MLP) modules to extract local features for
each sampling point. Thirdly, it applied Transformer blocks
to each point subset for global feature extraction. Finally,
the Cross-Level Cross-Attention (CLCA) module and Cross-
Scale Cross-Attention (CSCA) module were proposed to



build connections between different-resolution point sub-
sets and different-level features for long-range inter- and
intra-level dependencies modeling.

A BERT-style pre-training strategy for 3D global Trans-
formers was proposed in [33], which adapted BERT [83]
to 3D point cloud processing. Taking the local patches as
input, it first utilized the mini-PointNet [5] for the input
embedding, following ViT [17]. Then it used a point cloud
Tokenizer with a discrete Variational AutoEncoder (dVAE)
[84], to convert the embedded points into discrete point
tokens for pre-training. The Tokenizer network was adapted
from DGCNN [13] which produced meaningful local in-
formation aggregating, and was learned through dVAE-
based point cloud reconstruction. During pre-training, the
point embeddings with some masked tokens were fed into
the Transformer encoder. Supervised by the point tokens
generated by the Tokenizer, the encoder can be trained to
recover the corresponding tokens of the masked locations.
The authors have conducted comprehensive experiments to
show that the BERT-style pre-training strategy is able to
improve the performance of the pure Transformer in point
cloud classification and segmentation.

2.1.2 Local Transformers

In contrast to global Transformers, local Transformers [7],
[34], [35], [42], [85], [86] aim to achieve feature aggregation
in the local patch instead of the entire point cloud.

PT [7] adopted the PointNet++ [4] hierarchical archi-
tecture for point cloud classification and segmentation. It
focused on local patch processing, and replaced the shared
MLP modules in PointNet++ with local Transformer blocks.
PT had five local Transformer blocks operated on progres-
sively downsampled point sets. Each block was applied
on K-Nearest Neighbor (KNN) neighborhoods of sample
points. Specifically, the self-attention operator that PT used
was the vector attention [87] instead of the scalar attention.
The former has been proven to be more effective for point
cloud processing, since it supports channel-wise attention
weight assignment, as opposed to assigning one single
weight to a whole feature vector. Please refer to Sec. [7] an
overview of vector attention.

Pointformer was proposed in [35] to combine the local
and global features both extracted by Transformer blocks
for 3D object detection. It had three kinds of main blocks:
a Local Transformer (LT) block, a Global Transformer (GT)
block and a Local-Global Transformer (LGT) block. Firstly,
the LT block applied the dense self-attention operation in
the neighborhood of each centroid point generated by FPS
[4]. Secondly, taking the whole point cloud as input, the
GT block aimed to learn global context-aware features via
the self-attention mechanism. Lastly, the LGT block adopted
a multi-scale cross-attention module, to build connections
between local features from the LT and global features from
the GT. Specifically, the LGT block took the output of the
LT as query, and the output of the GT as key and value to
conduct the self-attention operation. As such, all centroid
points could be utilized to integrate global information,
which led to effective global feature learning.

Inspired by Swin Transformer [21], Stratified Trans-
former [51] was proposed for 3D point cloud segmentation.
It split the point cloud into a group of non-overlapping cubic
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windows via 3D voxelization and performed the local Trans-
former operation in each window. Stratified Transformer
was an encoder-decoder architecture. Its encoder was a hier-
archical structure consisting of multiple stages, where each
stage had two successive Transformer blocks. The former
block utilized a Stratified Self-Attention (SSA) to capture
the long- and short-range dependencies. The latter block
utilized a Shifted SSA to further strengthen the connections
between different independent windows, following Swin
Transformer [21]]. Specifically, to solve the issue that the local
Transformer is weak in capturing global information, SSA
generated the dense local key points and sparse distant key
points for each query point. The former was generated in the
window that the query point belonged to, while the latter
was generated in a larger window by downsampling the
entire input point cloud. With this, the receptive field of the
query point was not limited in the local window, allowing
SSA to capture global information. Additionally, Stratified
Transformer performed a KPConv [88] embedding in the
first stage to extract the local geometric information of the
input point cloud. This operation was proven to be effective
by their ablation experiments.

2.2 Operating Space

According to the operating space, 3D Transformers can
be divided into two categories: Point-wise Transformers
and Channel-wise Transformers. The former measures the
similarity among input points, while the latter distributes
attention weights along channels [40]. Generally, according
to Eq.[2} the attention maps of these two kinds of Transform-
ers can be expressed as:

QK"
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where the size of Point — wise Atin is N x N, while the
size of Channel — wise Attn is Cg x Ck.

Point — wise Attn = Softmaz(

),
@)
Channel — wise Attn = Softmax(

2.2.1 Point-wise Transformers

Point-wise Transformers aim to investigate the spatial corre-
lation among points and formulate the output feature map
as a weighted sum of all input features.

Since global Transformers and local Transformers in Sec.
are distinguished by the spatial operating scale, i.e.,
the whole point cloud or a local patch, all aforementioned
methods [7]], [8], [10]-[12], [31], [33]-I35], [37], [38], [42],
[51], [52], [81] in Sec. can be considered as point-wise
Transformers.

Point-wise Transformers are also widely applied to other
tasks. Xu et al. [36] proposed an encoder-decoder Trans-
former network (TD-Net) for point cloud denoising. The
encoder consisted of a coordinate-based input embedding
module, an adaptive sampling module and four stacked
point-wise self-attention modules. The outputs of the four
self-attention modules were concatenated together as input
of the decoder. Additionally, TD-Net used the adaptive
sampling approach which can automatically learn the offset
of each sampling point generated by FPS [4]. This operation



allows the sampling points closer to the underlying sur-
face. The decoder was applied to construct the underlying
manifold according to the extracted high-level features. And
finally, a clean point cloud can be reconstructed by manifold
sampling.

3D Medical Point Transformer (3DMedPT) [37] was
proposed for medical point cloud analysis. Specifically, it
included a hierarchical point-wise Transformer for classifi-
cation and a uniform-scale point-wise Transformer for seg-
mentation. 3DMedPT introduced the convolution operation
to the point-wise Transformer block. It added a local fea-
ture extraction module achieved using DGCNN [13] before
each Transformer block. Point Attention Network (P-A) [10]
and Pyramid Point Cloud Transformer (PPT) [52] also had
similar structures. Considering insufficient training sample
processing in the medical domain, 3DMedPT proposed a
special module named Multi-Graph Reasoning (MGR), to
enrich the feature representations.

2.2.2 Channel-wise Transformers

In contrast to point-wise Transformers, the channel-wise
Transformers [38]-[41]], [69] focus on measuring the simi-
larity of different feature channels. They are able to improve
the context information modeling by highlighting the role
of interaction across different channels [39].

Qiu et al. [40] proposed a back-projection module for lo-
cal feature capturing, leveraging an idea of error-correcting
feedback structure. They designed a Channel-wise Affinity
Attention (CAA) module for better feature representations.
Specifically, the CAA module consisted of two blocks: a
Compact Channel-wise Comparator (CCC) block and a
Channel Affinity Estimator (CAE) block. The CCC block
could generate the similarity matrix in the channel space.
The CAE block further calculated an affinity matrix, in
which an element with a higher attention value represented
a lower similarity of the corresponding two channels. This
operation can sharpen the attention weights and avoid
aggregating similar/redundant information. As such, each
channel of the output feature had sufficient intersection with
other distinct ones, which has been proven to be beneficial
to the final results. We also detail the CAA structure in Sec.

Instead of only using the feature channels, Transformer-
Conv proposed in [41] combined both coordinate and fea-
ture channels to design a novel channel-wise Transformer.
Specifically, the Query matrix was generated directly by the
coordinate information without any linear transformation,
while the Key matrix was generated by feature channels
with MLP. Then the attention matrix was calculated by
element-wise multiplication rather than dot product. As
such, the attention matrix was able to represent the relation-
ship between the coordinate channels and feature channels
of each point. Since all features came from the coordinate
space, an element with a higher value in the attention matrix
tended to indicate that the corresponding feature channel
was more faithful to the coordinate space. After that, the
Value matrix is created by projecting the Key matrix into
a latent space using an MLP. Then the new feature map,
called the response matrix, can be obtained by element-wise
multiplication between the V alue matrix and attention ma-
trix. The response matrix consisted of the weighted feature
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channels of all input points. Finally, the output features were
generated by applying a channel max-pooling operation to
the response matrix. The max-pooling played a screening
role and it could select the most important channels, i.e.,
the channels which suited the coordinate space best. This
process was proven effective for point cloud analysis by the
authors” ablation experiments.

2.3 Efficient Transformers

Despite achieving great success in point cloud processing,
standard Transformers tend to incur high computational
footprint and memory consumption because of massive
linear operations. Given N input points, the computation
and memory complexities of the standard self-attention
module are quadratic on N, i.e., O(Nz). This is the key
drawback when applying Transformers on large-scale point
cloud datasets.

Recently, there were several 3D Transformers researching
on improving the self-attention module for higher compu-
tational efficiency. For instance, Centroid Transformer [42]
took N point features as input while outputting a smaller
number M of point features. As such, the key information
in the input point cloud can be summarized by a smaller
number of outputs (called centroids). Specifically, it first
constructed M centroids from N input points, by optimiz-
ing a general “soft K-means” objective function. Then it used
the M centroids and IV input points to generate the Query
and Key matrices respectively. The size of the attention
map was reduced from N x N to M x N, so the computa-
tional cost of the self-attention was reduced from O(N3) to
O(NM). To further save the computational cost, the authors
applied a KNN approximation. This operation essentially
converted the global Transformer to a local Transformer.
In this case, the similarity matrix was generated by mea-
suring the relationships among each query feature vector
and its K neighbor key vectors, instead of N vectors. So
the computational cost can be further reduced to O(NK).
Similarly, PatchFormer [89] was also proposed to reduce
the size of the attention map. It first split the raw point
cloud into M patches, followed by aggregating the local
feature in each patch. The significant difference between
the two aforementioned models is that PatchFormer used
M aggregated local features to generate K ey matrix, while
Centroid Transformer used M centroids to generate Query
matrix. As such, the computational cost of the self-attention
in PatchFormer can also be reduced to O(NM).

Light-weight Transformer Network (LighTN) [43] was
proposed to reduce the computational cost in a different
way. LighTN aimed to simplify the main components in
the standard Transformer, maintaining the superior perfor-
mance of Transformers while increasing efficiency. Firstly, it
removed the positional encoding block because the input 3D
coordinates already contain positional information and can
be considered as a substitute for the positional encoding.
This eliminated the overhead of positional encoding itself.
Secondly, it utilized a small-size shared linear layer as the in-
put embedding layer. The dimensions of embedded features
were reduced by half compared to the computationally-
saving neighbor embedding setting in [12]. With this, the
computational costs of the input embedding can be re-
duced. Thirdly, it presented a single head self-correlation



layer as the self-attention module. The projection matrices
of Wg, Wk, and Wy were removed, to reduce learnable
parameters for high efficiency. Since the attention map was
generated only by the input self-correlation parameters, the
self-attention module was also named the self-correlation
module, which can be formulated as:

SA(X) = FCou(C(X)),

xT (4)

C(X)= softmax(X )X,

Ve
where SA(x) represents the self-attention block, FCyy:
represents the linear transformation, softmax(x) is the
activation function, and C' is the input feature dimension
declared in Eq.[2| Lastly, the authors built three linear layers
(a standard FFN block generally has two linear layers) in
the Feed-Forward Network (FFN) and used the expand-
reduce strategy [90] in the middle layer. So the negative
impact caused by the decreasing learnable parameters in
the self-correlation layer can be mitigated. Similarly, Group
Shuffle Attention (GSA) proposed in [44] also simplified
the self-attention mechanism in its Transformer network.
It integrated the shared projection weight matrix and non-
linearity activation function into the self-attention mecha-
nism (please see Sec.[5.1|for a detailed description of GSA).

3 DATA REPRESENTATION

There are several forms of 3D data representation, such as
points and voxels, both of which can be used as the input
of 3D Transformers. Since points can be represented by
or transformed into voxels, several voxel-based approaches
can also be performed on point clouds, so as to 3D Trans-
formers. According to different input formats, we divided
3D Transformers into Voxel-based Transformers and Point-
based Transformers.

3.1 Voxel-based Transformers

Unlike images, 3D point clouds are generally unstructured,
and cannot be directly processed by traditional convolution
operators. However, 3D point clouds can be easily converted
into 3D voxels, which are structured like images. Thus, some
Transformer-based works [45]-[47], [51] explored trans-
forming 3D point clouds into voxel-based representation.
The most general voxelization approach can be described
as follows [91]: The bounding box of a point cloud is
first regularly divided into 3D cuboids via rasterization.
Voxels containing points are retained, generating the voxel
representation of point clouds.

Inspired by the efficiency of sparse convolution on voxel
data [92], [93], Mao et al. [46] first proposed the Voxel
Transformer (VoTr) backbone for 3D object detection. They
presented the Submanifold Voxel module and the Sparse
Voxel module to extract features from non-empty and empty
voxels respectively. In both two modules, the Local Atten-
tion and Dilated Attention operations were implemented,
on the basis of the Multi-head Self-Attention mechanism
(MSA), to maintain low computational consumption for
numerous voxels. The proposed VoTr can be integrated into
most voxel-based 3D detectors. To tackle the computational
issue of Transformers as voxel-based outdoor 3D detectors,
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Voxel Set Transformer (VoxSeT) [47] was proposed to detect
outdoor objects in a set-to-set fashion. Based on the low-rank
characteristic of the self-attention matrix, a Voxel-based Self-
Attention (VSA) module was designed by assigning a set of
trainable “latent codes” to each voxel, which was inspired
by the induced set attention blocks in Set Transformer [94].
Inspired by the effectiveness of voxel-based representa-
tion on large-scale point clouds, voxel-based Transformers
can also be applied to large-scale point cloud processing. For
instance, Fan et al. [48] presented Super light-weight Sparse
Voxel Transformer (SVI-Net) for large scale place recog-
nition. They designed an Atom-based Sparse Voxel Trans-
former (ASVT) and a Cluster-based Sparse Voxel Trans-
former (CSVT). The former was used to encode short-range
local relations, while the latter was used to learn long-range
contextual relations. Park et al. [49] proposed Efficient Point
Transformer (EPT) for large-scale 3D scene understanding
from point clouds. To relieve the problem of geometric infor-
mation loss during voxelization, they introduced the center-
aware voxelization and devoxelization operations. On this
basis, Efficient Self-Attention (ESA) layers were employed
to extract voxel features. Their center-aware voxelization
preserved positional information of points in voxels.

3.2 Point-based Transformers

Since voxels are of regular format and points are not, the
transformation to voxels would lead to geometric informa-
tion loss to some extent [4], [5]. On the other hand, since
the point cloud is the original representation, it contains
the complete geometric information of the data. Thus, most
Transformer-based point cloud processing frameworks fall
into the category of point-based Transformer. Their archi-
tectures are usually classified in two main groups: uniform-
scale architecture [12], [33], [50], [63], [81] and multi-scale
architecture [7], [8], [37], 39, [51], [52].

3.2.1 Uniform Scale

Uniform-scale architectures usually keep the scale of the
point features constant during data processing. The number
of output features of each module is consistent with the
number of input features. The most representative work
is PCT [12], which was discussed in Sec. After the
input embedding stage, four global Transformer blocks of
PCT were directly stacked together to refine point features.
There was no hierarchical feature aggregation operation,
which facilitated the decoder design for dense prediction
tasks like point cloud segmentation. Feeding all input points
into the Transformer block is beneficial to global feature
learning. However, uniform-scale Transformers tend to be
weak in extracting the local features due to the lack of local
neighborhoods. Additionally, processing the whole point
cloud directly would lead to a high computation footprint
and memory consumption.

3.2.2 Multi Scale

Multi-scale Transformers refer to those with progressive
point sampling strategies during feature extraction, also
called hierarchical Transformers. PT [7] was the pioneering
design that introduced the multi-scale structure to a pure
Transformer network. The Transformer layers in PT were



applied to progressively (sub)sampled point sets. On one
hand, sampling operations could accelerate the computation
of the whole network by reducing the parameters of the
Transformer. On the other hand, these hierarchical struc-
tures usually came with KNN-based local feature aggrega-
tion operations. This local feature aggregation was beneficial
to the tasks that need fine semantic perception, such as
segmentation and completion. And the highly aggregated
local features at the last layer of the network could be taken
as the global features, which could be used for point cloud
classification. Additionally, there also exist many multi-
scale Transformer networks [8], [37], [51], [52] that utilized
EdgeConv [13]] or KPconv [88] for local feature extraction
and utilized Transformers for global feature extraction. With
this, they are able to combine the strong local modeling
ability of convolutions and the remarkable global feature
learning ability of Transformers for better semantic feature
representation.

4 3D TASKS

Similar to image processing [29], 3D point cloud-related
tasks can also be divided into two main groups: high-
level and low-level tasks. High-level tasks involve semantic
analysis, which focuses on translating 3D point clouds to
information that people can understand. Low-level tasks,
such as denoising and completion, focus on exploring fun-
damental geometric information. They are not directly re-
lated to human semantic understanding but can indirectly
contribute to high-level tasks.

4.1 High-level Task

In the field of 3D point cloud processing, high-level tasks
usually include: classification & segmentation [7]], [11], [12],
[32]-[34], [37], [39], [40I, [42]], [44], [45], [51], [85], [86l, [891,
[95]-[99], object detection [35], [46], [47], [53]-[55], [69],
[77], [100]-[102]], tracking [56]-[58], registration [59]-[63],
[71], [72], [103] and so on. Here, we started by introducing
classification & segmentation tasks, which are very common
and fundamental research topics in the field of 3D computer
vision.

4.1.1

Similar to image classification [104]-[107], 3D point cloud
classification methods aim at classifying the given 3D
shapes into specific categories, such as chair, bed and sofa
for indoor scenes, and pedestrian, cyclist and car for outdoor
scenes. In the field of 3D point cloud processing, since the
encoders of segmentation networks are usually developed
from classification networks, we introduce these tasks to-
gether.

Xie et al. [11], for the first time, introduced the self-
attention mechanism into the task of point cloud recog-
nition. Inspired by the success of shape context [108] in
shape matching and object recognition, the authors first
transformed the input point cloud into a form of shape
context representation. This representation was comprised
of a set of concentric shell bins. Based on the proposed novel
representation, they then introduced the ShapeContextNet
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(SCN) to perform point feature extraction. To automati-
cally capture the rich local and global information, a dot-
product self-attention module was further applied to the
shape context representation, resulting in the Attentional
ShapeContextNet (A-SCN).

Inspired by the self-attention networks in image anal-
ysis [87], [109] and NLP [83]], Zhao et al. [7] designed
a vector attention-based Point Transformer layer. A Point
Transformer block was constructed on the basis of the Point
Transformer layer in a residual fashion. The encoder of
PT was constructed with only Point Transformer blocks,
pointwise transformations and pooling operation for point
cloud classification. Moreover, PT also used a U-Net struc-
ture for point cloud segmentation, where the decoder was
designed to be symmetrical with the encoder. It presented a
Transition Up module to recover the original point cloud
with semantic features from the downsampled point set.
Such module consisted of a linear layer, batch normaliza-
tion, ReLU, and trilinear interpolation for feature mapping.
Additionally, a skip connection between the encoder block
and the corresponding decoder block was introduced to
facilitate backpropagation. With these carefully designed
modules, PT became the first model that reached over 70%
mloU (70.4%) for semantic segmentation on Area 5 of the
S3DIS dataset [110]. As for the task of shape classification
on the ModelNet40 dataset, Point Transformer also achieved
93.7% overall accuracy.

As illustrated in Sec. Point-BERT [33]] was proposed
to pre-train pure Transformer-based models with a Mask
Point Modeling (MPM) task for point cloud classification. It
was inspired by the concept of BERT [83] and masked au-
toencoder [111]. Specifically, a point cloud was first divided
into several local point patches. Then a mini-PointNet was
utilized to get the embedded feature (which can be regarded
as tokens) for each patch. Like [33], some tokens were
randomly discarded (masked) and the rest were fed to the
Transformer network, to recover the masked point tokens.
This training procedure was entirely self-supervised. With
8192 points as input, Point-BERT achieved 93.8% overall
accuracy on ModelNet40 [112].

Zhang et al. [45] proposed a pure Transformer-based
point cloud learning backbone, taking 3D voxels as the in-
put, termed Point-Voxel Transformer (PVT). Inspired by the
recent Swin Transformer [21], a Sparse Window Attention
(SWA) operation was designed to perform the self-attention
within non-overlapping 3D voxel windows in a shifting-
window configuration. A relative-attention (RA) operation
was also introduced to compute fine-grained features of
points. With the two aforementioned modules, PVT could
take advantage of both point-based and voxel-based struc-
tures with one pure Transformer architecture. Similarly, Lai
et al. [51] proposed Stratified Transformer to explicitly en-
code global contexts. It also extended Swin Transformer [21]
to point cloud processing by 3D voxelization. The main
difference from PVT is that Stratified Transformer took both
dense local points and sparse distant points as the key
vectors for each query vector. This operation was beneficial
to message passing among cubic windows and as well as
to global information capturing. Both PVT and Stratified
Transformer achieved 86.6% ploU for part segmentation
on ShapeNet dataset. However, Stratified Transformer per-



formed better for semantic segmentation, surpassing PVT
by 4.7% mloU on the S3DIS dataset.

4.1.2 Object Detection

Thanks to the popularization of 3D point cloud scanners,
3D object detection is becoming a more and more popular
research topic. Similar to the 2D object detection task, 3D
object detectors aim to output 3D bounding boxes with
point clouds as input data. Recently, Carion et al. [15]
introduced the first Transformer-based 2D object detector,
DETR. It proposed to combine Transformers and CNNs
to eliminate non-maximum suppression (NMS). Since then,
Transformer-related works have also shown a flourishing
growth in the field of point cloud-based 3D object detection.

On the basis of VoteNet [113], Xie et al. [53], [114], for
the first time, introduced the self-attention mechanism of
Transformers into the task of 3D object detection in indoor
scenes. They proposed the Multi-Level Context VoteNet
(MLCVNet) to improve detection performance by encoding
contextual information. In their papers, each point patch
and vote cluster were regarded as tokens in Transform-
ers. Then the self-attention mechanism was utilized to
strengthen the corresponding feature representations via
capturing relations within point patches and vote clusters,
respectively. Due to the integration of the self-attention
modules, MLCVNet achieved better detection results than
its baseline model on both ScanNet [80] and SUN RGB-
D datasets [79]. PQ-Transformer [100] was proposed to
detect 3D objects and predict room layouts simultaneously.
which was also based on VoteNet. It utilized a Transformer
decoder to enhance proposal features. With the assistance of
room layout estimation and refined features by the Trans-
former decoder, PQ-Transformer attained a mAP@0.25 of
67.2% on ScanNet.

Aforementioned methods employed the hand-crafted
grouping scheme, obtaining features for object candidates
by learning from points within the corresponding local re-
gions. However, Liu et al. [54] argued that the point group-
ing operation within limited regions tended to hinder the
performance of 3D object detection. Thus, they presented a
group-free framework with the aid of the attention mecha-
nism in Transformers. The core idea was that the features of
an object candidate should come from all the points in the
given scene, instead of a subset of the point cloud. After
obtaining object candidates, their method first leveraged
a self-attention module to capture contextual information
between the object candidates. They then designed a cross-
attention module to refine the object features with the
information of all the points. With the improved attention
stacking scheme, their detector achieved the mAP@0.25 of
69.1% on the ScanNet dataset.

Inspired by DETR [15] in 2D object detection, an end-to-
end 3D DEtection Transformer network, termed 3DETR [55],
was first proposed to formulate 3D object detection as a set-
to-set problem. Borrowing ideas from both DETR [15] and
VoteNet [113], 3DETR was designed in the general encoder-
decoder fashion. In the encoder part, sampled points and
the corresponding features extracted by MLP were directly
fed into a Transformer block for feature refinement. In
the decoder part, these features went through a parallel
Transformer-fashion decoder and were turned into a set of
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object candidate features. These object candidate features
were finally used to predict 3D bounding boxes. 3DETR
improved on VoteNet by 9.5% APs9 and 4.6% AP,5 on
ScanNetV2 and SUN RGB-D respectively.

Apart from the aforementioned methods focusing on
indoor scenes, Sheng et al. [69] proposed a Channel-wise
Transformer based two-stage framework (CT3D) to im-
prove 3D object detection performance in outdoor LiDAR
point clouds. The input of the channel-wise Transformer
came from a Region Proposal Network (RPN). Moreover,
the Transformer network consisted of two sub-modules:
the proposal-to-point encoding module and the channel-
wise decoding module. The encoding module first took
the proposals and their corresponding 3D points as input.
Then it extracted the refined point features through a self-
attention-based block. The channel-wise decoding module
transformed the extracted features from the encoder module
into a global representation through a channel-wise re-
weighting scheme. Finally, Feed-Forward Networks (FFNs)
were performed for detection predictions. As such, CT3D
achieved 81.77% AP in the moderate car category on the
KITTI test set.

In a similar paradigm to DETR [15], a LIDAR and Cam-
era fusion based 3D object detector based on Transformers
was proposed in [115], called TransFusion. In TransFusion,
the attention mechanism was employed to adaptively fuse
features from images. It aimed to relieve the problem of
bad association between LiDAR points and image points
established by calibration matrices. CAT-Det [101] was also
proposed to fuse LiDAR point clouds and RGB images more
efficiently for 3D object detection performance boosting. A
Pointformer and an Imageformer were first introduced in
the branches of the point cloud and image respectively to
extract multi-modal features. A Cross-Modal Transformer
(CMT) module was then designed to combine the features
from the aforementioned two streams. With the perfor-
mance of 67.05% mAP on the KITTI test split, CAT-Det
became the first multi-modal solution that significantly sur-
passed LiDAR-only ones.

4.1.3 Object Tracking

3D object tracking takes two point clouds (i.e., a template
point cloud and a search point cloud) as input. It outputs 3D
bounding boxes of the target (template) in the search point
cloud. It involves feature extraction of point clouds and
feature fusion between template and search point clouds.
Cui et al. [56] argued that most existing tracking ap-
proaches did not consider the attention changes of object
regions during tracking. According to them, different re-
gions in the search point cloud should contribute different
importance to the feature fusion process. Based on this ob-
servation, they presented a LiDAR-based 3D Object Track-
ing with a TRansformer network (LTTR). This method was
able to improve the feature fusion of template and search
point clouds by capturing attention changes over tracking
time. Specifically, they first built a Transformer encoder to
improve the feature representation of template and search
point clouds separately. Then the cross-attention mechanism
was employed to build a Transformer decoder. It could
fuse features from the template and search point clouds



by capturing relations between the two point clouds. Ben-
efiting from the Transformer-based feature fusion between
the template and search point clouds, LTTR reached 65.8%
mea Precision on KITTI tracking dataset. Zhou et al. [57]
also proposed a Point Relation Transformer (PRT) mod-
ule to improve feature fusion in their coarse-to-fine Point
Tracking TRansformer (PTTR) framework. Similar to LTTR,
PRT employed self-attention and cross-attention to encode
relations within and between point clouds respectively. The
difference is that PRT utilized the Offset-Attention [12] to
relieve the impact of noise data. Finally, PTTR surpassed
LTTR by 8.4% and 10.4% in terms of average Success and
Precision, and became a new SOTA on the KITTI tracking
benchmark.

Unlike the two aforementioned approaches which fo-
cused on the feature fusion step, Shan et al. [58] introduced
a Point-Track-Transformer (PTT) module to enhance the
feature representation after the feature fusion step. Fea-
tures from the fusion step and the corresponding point
coordinates were both mapped into the embedding space.
A position encoding block was also designed to capture
positional features using the KNN algorithm and an MLP
layer. With the aforementioned two embedded semantic
and positional features as input, a self-attention block was
finally applied to obtain more representative features. To
verify the effectiveness of the proposed PTT, the authors
integrated it into the seeds voting and proposal generation
stages of the P2B [116] model resulting in the PTT-Net. PTT-
Net improved P2B by 9.0% in terms of Precision on KITTI
for the car category.

4.1.4 Registration

Given two point clouds as input, the aim of point cloud
registration is to find a transformation matrix to align them.

Deep Closest Point (DCP) model proposed in [59] intro-
duced the Transformer encoder into the task of point cloud
registration. As usual, the input unaligned point clouds
were first sent to a feature embedding module, such as
PointNet [5] and DGCNN [13], to transfer 3D coordinates
into a feature space. A standard Transformer encoder was
then applied to perform context aggregation between two
embedded features. Finally, DCP utilized a differentiable
Singular Value Decomposition (SVD) layer to compute the
rigid transformation matrix. DCP was the first work that
employed the Transformer model to improve the feature
extraction of point clouds in registration. With the same
paradigm, STORM [60] also deployed Transformer layers
to refine the point-wise features extracted by EdgeConv [13]
layers, capturing the long-term relationship between point
clouds. It achieved better performance than DCP for partial
registration on ModelNet40 dataset. Similarly, Fischer et
al. [61] leveraged multi-head self- and cross-attention mech-
anisms to learn contextual information between target and
source point clouds. Their method focused on processing
outdoor scenes, e.g., the KITTI dataset [117].

To find more robust correspondences between two
point clouds, Fu et al. [62] presented the first deep graph
matching-based framework (RGM) to perform robust point
cloud registration, which was less sensitive to outliers. Dur-
ing the graph establishment, they employed Transformer
encoders to obtain the soft edges of two nodes within a
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graph. With the generated soft graph edges, better corre-
spondences could be obtained for the overlapping parts
when registering partial-to-partial point clouds. The effec-
tiveness of the proposed Transformer-based edge gener-
ator was demonstrated by the ablation stud where the
performance dropped on ModelNet40 when replacing the
edge generator with either full connection edges or sparse
connection edges.

Recently, Yew et al. [72] argued that explicit feature
matching and outlier filtering via RANSAC in point cloud
registration can be replaced with attention mechanisms.
They designed an end-to-end Transformer framework,
termed REGTR, to directly find point cloud correspon-
dences. In REGTR, point features from a KPconv [88]
backbone were fed into several multi-head self- and cross-
attention layers for comparing source and target point
clouds. With the aforementioned simple design, REGTR
became the current state-of-the-art point cloud registra-
tion method on the ModelNet40 [112] and 3DMatch [118]
datasets. Similarly, GeoTransformer [71] also utilized self-
and cross-attention to find robust superpoint correspon-
dences. In terms of Registration Recall, both REGTR and
GeoTransformer achieved 92.0% on the 3DMatch dataset.
However, GeoTransformer surpassed REGIR by 10.2% on
the 3DLoMatch [119] dataset.

4.1.5 Point Cloud Video Understanding

The 3D world around us is dynamic and consistent in time,
which cannot be fully represented by traditional single-
frame and fixed point clouds. In contrast, point cloud
videos, a set of point clouds captured in a fixed frame
rate, could be a promising data representation of dynamic
scenes in the real world. Understanding dynamic scenes and
dynamic objects is important for the application of point
cloud models to many real-world scenarios. Point cloud
video understanding involves processing a time sequence
of 3D point clouds. Thus, the Transformer architecture could
be a promising choice to process point cloud videos, since
they are good at dealing with global long-range interactions.

Based on such observation, P4Transformer [64] was
proposed to process point cloud videos for action recog-
nition. To extract the local spatial-temporal features of a
point cloud video, the input data were first represented
by a set of spatial-temporal local areas. Then a point 4D
convolution was used to encode features for each local
area. After that, the P4Transformer authors introduced a
Transformer encoder to receive and integrate the features
of local areas via capturing long-range relationships across
the entire video. P4Transformer has been successfully ap-
plied to the task of 3D action recognition and 4D semantic
segmentation from point clouds. It achieved higher results
than PointNet++-based methods on many benchmarks (e.g.,
the MSR-Action3D [120], the NTU RGB+D 60 [121] and
120 [122] datasets for 3D action recognition, and the Synthia
4D [93] dataset for 4D semantic segmentation). It demon-
strated the effectiveness of Transformers on point cloud
video understanding.

4.2 Low-level Task

The input data of low-level tasks is usually the raw scanned
point cloud with occlusion, noise, and uneven densities.



Thus, the ultimate goal of low-level tasks is to get a high-
quality point cloud, which could benefit high-level tasks.
Some typical low-level tasks include point cloud downsam-
pling [43], upsampling [38], denoising [36]], [65], comple-
tion [50], 66]1-168], [73], [74], [123], [124].

4.2.1 Downsampling

Given a point cloud with IV points, downsampling methods
aim at outputting a smaller size of point cloud with M
points, while retaining the geometric information of the
input point cloud. Leveraging the powerful learning ability
of Transformers, LighTN [43] was proposed to downsample
point clouds in a task-oriented manner. As mentioned in
Sec. it first removed the position encoding, then used
a small-size shared linear layer as the embedding layer.
Moreover, the MSA module was replaced with a single head
self-correlation layer. Experimental results demonstrated the
aforementioned strategies significantly reduced the com-
putational cost. 86.18% classification accuracy could still
be attained while only 32 points were sampled. Moreover,
the lightweight Transformer network was designed as a
detachable module, which can be easily inserted into other
neural networks.

4.2.2 Upampling

Contrary to downsampling, upsampling methods aim to
restore missing fine-scale geometric information by out-
putting a point cloud of bigger size than the input point
cloud [125]. The upsampled points are expected to re-
flect realistic geometry and lie on the surfaces of the
objects represented by the given sparse point clouds.
PU-Transformer [38] was the first work to apply the
Transformer-based model to point cloud upsampling. The
authors designed two novel blocks for the PU-Transformer.
The first block was the Positional Fusion block (PosFus),
which aimed at capturing local position-related information.
The second one was the Shifted Channel Multi-head Self-
Attention (SC-MSA) block. It was designed to address the
lack of connection between the outputs of different heads
in conventional MSA. See the SC-MSA in Sec. ] for more
details. PU-Transformer showed the promising potential of
Transformer-based models in point cloud upsampling.

4.2.3 Denoising

Denoising takes point clouds corrupted by noise as input,
and outputs clean point clouds by utilizing the local geom-
etry information. TDNet [36] was first proposed for point
cloud denoising. Taking each point as a word token, it im-
proved the NLP Transformer [6] making it suitable for point
cloud feature extraction. The Transformer-based encoder
mapped the input point cloud into a high-dimensional
feature space and learned the semantic relationship among
points. With the extracted feature from the encoder, the la-
tent manifold of the noisy input point cloud can be obtained.
Finally, a clean point cloud can be generated by sampling
each patch manifold.

Another category of point cloud denoising method is to
filter out noise points directly from the input point clouds.
For instance, some Lidar point clouds could contain a huge
number of virtual (noise) points. These points are produced
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by the specular reflections of glass or other kinds of reflec-
tive materials. To detect these reflective noise points, Gao et
al. [65] first projected the input 3D LiDAR point cloud into
a 2D range image. Then a Transformer-based auto-encoder
network was employed to predict a noise mask to indicate
the points coming from reflection.

4.2.4 Completion

In most 3D practical applications, it is usually difficult to
obtain complete point clouds of objects or scenes due to
occlusion from other objects or self-occlusion. This issue
makes point cloud completion an important low-level task
in the field of 3D vision.

PoinTr proposed in [66]], for the first time, converted
point cloud completion to a set-to-set translation task.
Specifically, the authors claimed that the input point cloud
can be represented by a set of groups of local points, termed
“point proxies”. Taking a sequence of point proxies as
input, a geometry-aware Transformer block was carefully
designed to generate the point proxies of the missing parts.
In a coarse-to-fine fashion, FoldingNet [126] was finally
employed to produce points based on the predicted point
proxies. The geometry-aware Transformer block was a self-
contained module, which can capture both the semantic
and geometric relationship among points. PoinTr attained
8.38 Average L; Chamfer Distance (CD) on the PCN
dataset [127].

In contrast with PointTr, Xiang et al. [67] proposed to
formulate the task of point cloud completion as the growth
of 3D points in a snowflake-like fashion. Based on this
insight, SnowflakeNet was presented to focus on recovering
fine geometric details, such as corners, sharp edges and
smooth regions, of the complete point cloud. The core idea
was to combine Snowflake Point Deconvolution (SPD) layer
with the skip-Transformer to better guide the point split-
ting process. SPD could generate multiple points from any
single one. Skip-Transformer was capable of capturing both
contexts and spatial information from the given point and
the generated points. With the skip-Transformer integrated,
the SPD layers were capable of modeling structure char-
acteristics, thus producing more compact and structured
point clouds. Benefiting from SPD and the skip-Transformer,
SnowflakeNet surpassed PoinTr by 1.17 Average L; Cham-
fer Distance (CD) on the PCN dataset [127].

Instead of working directly on the point cloud, Shape-
Former proposed in [68] introduced a novel 3D sparse
representation named the Vector Quantized Deep Implicit
Functions (VQDIF). It converted the 3D point cloud to a
set of discrete 2-tuples consisting of the coordinate and the
quantized feature index. On this basis, a VQDIF encoder
and decoder were designed to perform transformation be-
tween the 3D point cloud and the proposed 2-tuples. The
sequences of 2-tuples features from partial observations
were fed into a Transformer-based autoregressive model to
generate complete feature sequences. Then these sequences
were projected to a feature grid via the VQDIF decoder.
Finally, a 3D-Unet [128] was employed to generate local
deep implicit functions of objects” whole shapes.
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5 3D SELF-ATTENTION VARIANTS

Based on the standard self-attention module, there are many
variants which were designed to improve the performance
of Transformers in 3D point cloud processing, as shown in
Figs.[and p| As stated in Sec.[2.2} we categorize the relevant
variants into two classes: Point-wise Variants and Channel-
wise Variants.

5.1 Point-wise Variants
P-A (Fig. f{a)) and A-SCN (Fig. b)) have differ-
ent residual structures in their Transformer encoders. The
former strengthened the connection between the output
and input of the module, while the later established the
relationship between the output and the Value matrix of
the module. Relevant experiments have demonstrated that
the residual connection facilitated model convergence [11].
Inspired by the Laplacian matrix L = D — E in Graph
convolution networks [82], the PCT paper further pro-
posed an Offset-Attention module (Fig. Ekc)). This module
calculated the offset (difference) between the Self-Attention
(SA) features and the input features X by matrix subtrac-
tion, which was analogous to a discrete Laplacian operation.
Additionally, it refined the normalization of the similarity
matrix by replacing Scale + Softmax (SS) with Softmax +
Ly Norm (SL) operation. It was able to sharpen the atten-
tion weights and reduce the influence of noise. Based on
the Offset-Attention, Zhou et al. proposed a Relation
Attention Module (RAM) which had a similar structure as
the Offset-Attention module. The difference was that it first
projected Query, Key and Value matrices into latent fea-
ture spaces by linear layers. Then, instead of generating the
Attentionmap by multiplying the Query and K ey matrices
directly, it applied the Lo normalization to the Query and
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Key matrices. This operation prevented the few feature
channels with extremely large magnitudes from overpow-
ering the rest. Ablation experiments in demonstrated
that the Ly normalization was able to improve the model
performance.

PT (Fig. Ekd)) introduced the vector subtraction
attention operator to its Transformer network, replacing
the commonly-used scalar dot-product attention. Compared
with the scalar attention, vector attention is more expressive
since it supports adaptive modulation of individual feature
channels, as opposed to whole feature vectors. This kind
of expression appears to be very beneficial in 3D data pro-
cessing [7]]. Point Transformer utilized the subtraction-form
vector attention to achieve the local feature aggregation.
The attention map was generated by simply building the
connections between the centroid feature and its neighbor
feature, instead of measuring the similarity between any
two point features within a neighborhood. Additionally, the
3D Convolution-Transformer Network (3DCTN) paper
conducted a detailed investigation on self-attention opera-
tors in 3D Transformers, including the scalar attention and
different forms of vector attention.

As mentioned in Sec. LighTN presented a self-
correlation module, to reduce the computational cost. As
shown in Fig. [e), it eliminated the projection matrices,
Wq, Wk, and Wy simultaneously in the self-attention
mechanism. Only the input self-correlation parameters were
used to generate attention features. According to Eq. [ the
self-correlation mechanism generates a symmetry attention
map X - X7, which satisfies the permutation invariance
in point cloud processing [43]. The authors also conducted
a series of ablation studies, removing different projection
matrices, to demonstrate the effectiveness of the proposed
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self-correlation mechanism.

PU-Transformer [38] proposed the SC-MSA block to
improve the MSA mechanism. Specifically, despite the rich
information captured by MSA, only feature dependencies
within the same head can be estimated. I.e., MSA lacked in-
formation propagation between different heads. To address
this issue, as shown in Fig. f{f), PU-Transformer applied a
window (dashed square) shift along the channels to ensure
that any two consecutive splits had a uniform overlap area.
Compared with the independent splits of the standard MSA,
SC-MCA is able to enhance the channel-wise relations in the
output features.

GSA proposed in [44] had two improvements compared
to the standard MSA. The first one was that GSA was
a parameter-efficient self-attention mechanism. It used a
shared projection matrix W to generate the Query and Key
matrices, and used a non-linearity o to generate the Value

matrix: KT
LX), ©)

where Q = K = XW and C is the dimension of X.
With this, GSA is able to reduce the computational costs
of the self-attention operation. The second one was that
GSA introduced channel shuffle to MSA, which enhanced
the information flow between heads. As shown in Fig. #{g),
unlike PU-Transformer [38], it re-grouped the channels by
rewriting each point feature.

Attny (X) = softmax(

5.2 Channel-wise Variants

Dual Transformer Network (DT-Net) [39] proposed the
channel-wise MSA, applying the self-attention mechanism
to the channel space. As shown in Fig. [f(a), unlike the
standard self-attention mechanism, the channel-wise MSA
multiplied the transposed Query matrix and Key matrix.
As such, the attention map could be generated to measure
the similarities between different channels, as described in
Eq.

%s shown in Fig. b), the CAA module [40] utilized a
similar approach to generate the similarity matrix between
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different channels. Moreover, it designed a CAE block to
generate the affinity matrix, strengthening the connection
between distinct channels and avoiding aggregating sim-
ilar/redundant information. The Value matrix was gen-
erated by an MLP layer, and the final feature map was
obtained by multiplying the affinity matrix and Value
matrix. Additionally, the CAA module used a regular skip
connection between the input and output feature map.

The Transformer-Conv module proposed in [41] learned
the potential relationship between feature channels and co-
ordinate channels. As shown in Fig. c), The Query matrix
and K ey matrix were generated by coordinates and features
of the point cloud respectively. Then the similarity matrix
was produced by a relation function 5 (e.g., element-wise
multiplication) and channel softmax operation. In contrast
with the aforementioned methods, the Value matrix in the
Transformer-Conv module was generated from the Key
matrix by linear projection, followed by multiplying the
similarity matrix and Value matrix in an element-wise
manner. Lastly, the final feature was generated by using a
channel max-pooling and further 1 x 1 convolution.

6 COMPARISON AND ANALYSIS

This section gives an overall comparison and analysis of 3D
Transformers on several main-stream tasks, including clas-
sification, part segmentation, semantic segmentation and
object detection.

6.1 Classification & Segmentation

3D point cloud classification and segmentation are two
fundamental yet challenging tasks, in which Transformers
have played a key role. Classification can best reflect the
ability of neural networks to extract salient features. Table.
shows the classification accuracy of different methods on
the ModelNet40 [112] dataset. For fair comparisons, input
data and input size are also shown. We report the Overall
Accuracy (OA) as the evaluation metric, which is widely
adopted.



TABLE 1
Comparative analysis between involved point cloud classification
methods on the ModelNet40 [112] dataset. OA means Overall
Accuracy. All results quoted were taken from the cited papers. P =
points, N = normals.

Method [ input inputsize OA(%)
Non-Transformer
PointNet [5] Iy 1024 x 3 892
PointNet++ [4] P 1024 x 3 90.7
PointNet++ [4] PN 5120 x 6 91.9
PointWeb [129] P 1024 x 3 92.3
SpiderCNN [130] PN 1024 x 6 924
PointCNN [131]] P 1024 x 3 925
PointConv [[132] PN 1024 x 6 92.5
FPConv [133] PN 1024 x 6 92.5
Point2sequence [134] P 1024 x 3 92.6
DGCNN [13] P 1024 x 3 929
KPConv [88] P 6800 x 3 92.9
InterpCNN [135] P 1024 x 3 93.0
ShellNet [136] P 1024 x 3 93.1
RSMix [137] P 1024 x 3 93.5
PAConv [138] P 1024 x 3 93.9
RPNet [139] PN 1024 x 6 94.1
CurveNet [140] P 1024 x 3 94.2
PointMLP [141] P 1024 x 3 94.5
Attention/Transformer
ShapeContextNet [[11] P 1024 x 3 90.0
PATS [44] P 1024 x 3 91.7
DT-Net [39] P 1024 x 3 92.9
MLMSPT [95] P 1024 x 3 929
PointASNL [32] PN 1024 x 6 93.2
PCT [12] P 1024 x 3 93.2
Centroid Transformers [42] | P 1024 x 3 93.2
LFT-Net [34] PN 2048 x 6 93.2
3DMedPT [37] P 1024 x 3 934
3CROSSNet [31] P 1024 x 3 93.5
PatchFormer [89] PN 1024 x 6 93.6
Point Transformer [7] PN 1024 x 6 93.7
Point-BERT [33] P 8192 x 3 93.8
CAA [40] P 1024 x 3 93.8
PVT [45] PN 1024 x 6 94.0

From the table, we can see the recent proliferation of
Transformer-based point cloud processing methods from
2020, when the Transformer architecture was first employed
in image classification in the ViT paper [17]. Due to the
strong ability of global information aggregating, Transform-
ers rapidly achieved leading positions in this task. Most 3D
Transformers achieved a classification accuracy of around
93.0%. The newest PVT [45] pushed the limit to 94.0%,
which surpassed most non-Transformer algorithms of the
same period. As an emerging technology, the success of the
Transformer in point cloud classification demonstrates its
great potential in the field of 3D point cloud processing.
We also presented the results of several state-of-the-art non-
Transformer-based methods as reference. As can be seen, the
classification accuracy of the recent non-Transformer-based
methods has exceeded 94.0%, and the highest one is 94.5%,
achieved by PointMLP [141]. The various attention mecha-
nisms used in Transformer methods are versatile and have
great future potential for breakthroughs. We believe adapt-
ing innovations of general point cloud processing methods
to Transformer methods can achieve state-of-the-art results.
For example the Geometric Affine Module which resulted
in PointMLP’s impressive performance can be easily inte-
grated into a Transformer-based network. Le. PointMLP’s
performance is an indication of the Geometric Affine mod-
ule’s excellent performance, and not that MLPs are superior
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to Transformers as feature extraction backbones.

For part segmentation, ShapeNet part segmentation
dataset [142] results were used for comparison. The com-
monly used part-average Intersection-over-Union was set
as the performance metric. As summarised in Table.
all the Transformer-based methods achieved a pIOU of
around 86%, except for ShapeContextNet [11], which was
an early model published before 2019. Note that Stratified
Transformer [51]] achieved the highest 86.6% ploU among
all the comparative methods. It was also the best model in
the task of semantic segmentation on the S3DIS semantic
segmentation dataset [110] (Table. [B).

6.2 Object Detection

The application of Transformers to 3D object detection from
point clouds remains less explored research area. There
are only a few Transformer or Attention-based methods in
recent literature. A reason could be that object detection is
more complicated than classification. Table. ] summarises
the performance of these Transformer-based networks on
two public indoor scene datasets: SUN RGB-D [79] and
ScanNetV2 [80]. VoteNet [113] is also reported here as
a reference, which is the pioneering work in 3D object
detection. In terms of APQ25 in the ScanNetV2 dataset,
all the Transformer-based methods performed better than
VoteNet. Pointformer [35] and MLCVNet [53] were based on
VoteNet, and achieved similar performance. Both of them
utilized the self-attention mechanism in Transformers to
enhance the feature representations. Instead of leveraging
the local voting strategy in the aforementioned two ap-
proaches, GroupFree3D [54] directly aggregated semantic
information from all the points in the scene to extract the
features of objects. Its performance of 69.1% demonstrated
that aggregating features from all the elements by the self-
attention mechanism is a more efficient way than the local
voting strategy in VoteNet, MLCVNet, and Pointformer.
3DETR [55], as the first end-to-end Transformer-based 3D
object detector, achieved the second best detection perfor-
mance, 65.0%, in the ScanNetV2 dataset.

7 DISCUSSION AND CONCLUSION
7.1 Discussion

As in 2D computer vision, Transformers also showed its
potential in 3D point cloud processing. From the perspective
of the 3D tasks, Transformer-based methods mainly focused
on high-level tasks, such as classification and segmenta-
tion. We argue the reason is that Transformers are better
at extracting global contextual information via capturing
long-dependency relationships, which corresponds to the
semantic information in high-level tasks. On the other hand,
low-level tasks, such as denoising and sampling, focus on
exploring local geometric features. From the perspective of
performance, 3D Transformers improved the accuracy of the
aforementioned tasks and surpassed most of the existing
methods. However, as shown in Sec. [f for certain tasks,
there is still a gap between them and the start-of-the-art
non-Transformer-based methods. This is an indication that
simply using Transformers as the backbone is not enough.
Other innovative point cloud processing techniques must
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TABLE 2
Comparative analysis between different point cloud Transformers in terms of ploU on the ShapeNet part segmentation dataset. ploU means
part-average Intersection-over-Union. All results quoted were taken from the cited papers.

Method ploU p?:;e bag cap car chair p;irr-le guitar knife lamp laptop rr;)?{(oer- mug pistol rocket lsjléztreci table
3DMedPT [37] 84.3 | 81.2 86.0 91.7 79.6 90.1 81.2 919 885 84.8 96.0 723 958 832 64.6 782 83.8
ShapeContextNet [11] 84.6 | 83.8 80.8 83.5 793 90.5 69.8 917 865 829 960 692 939 825 629 744 80.8
DT-Net [39] 85.6 | 83.0 81.4 84.3 784 909 743 91.0 873 847 95.6 69.0 944 825 590 764 835
3CROSSNet [31] 859 | 83.8 849 86.1 79.8 91.2 703 91.1 87.0 850 959 732 949 832 562 767 83.0
CAA [40] 859 | 845 822 86.8 789 91.1 745 914 89.0 845 955 69.6 942 834 578 755 835
PointASNL [32] 86.1 | 84.1 84.7 879 79.7 922 737 910 872 842 958 744 952 81.0 63.0 763 832
LFT-Net [34] 86.2 | 83.0 839 909 794 931 714 925 88.6 857 959 69.3 942 850 656 746 855
PCT [12] 86.4 | 85.0 824 89.0 81.2 919 715 913 881 863 958 646 958 836 622 776 837
MLMSPT [95] 864 | 844 84.7 89.2 80.2 894 771 923 875 853 96.7 71.6 952 842 613 760 83.6
PatchFormer [89] 86.5 - - - - - - - - - - - - - - - -

Point Transformer [7] 86.6 - - - - - - - - - - - - - - - -

PVT [45] 86.6 | 85.3 82.1 88.7 82.1 924 755 910 889 856 954 762 947 842 65.0 753 817
Stratified Transformer [51]] | 86.6 - - - - - - - - - - - - - - - -

TABLE 3

Comparative analysis between different point cloud Transformers in terms of mloU/mAcc/OA on the S3DIS Area 5 semantic segmentation dataset.
mloU means mean classwise Intersection over Union, mAcc means mean of classwise ACCuracy, and OA means Overall pointwise Accuracy. All
results quoted were taken from the cited papers.

Method OA | mloU | mAcc | ceiling floor wall beam column window door table chair sofa  bookcase board clutter
ShapeContextNet [11] 81.6 52.7 - - - - - - - - - - - - - -
PATs [44] - 60.07 | 70.83 93.04 9851 7228  1.00 41.52 85.05 3822 5766 83.64 48.12 67.00 61.28 33.64
PCT [12] - 61.33 67.65 92.54 98.42  80.62 0.00 19.37 61.64 48.00 76.58 8520 46.22 67.71 67.93 52.29
PointASNL [32 87.7 62.6 68.5 94.3 98.4 79.1 0.0 26.7 55.2 66.2 83.3 86.8 47.6 68.3 56.4 52.1
MLMST [95 - 629 - 94.5 98.7 90.6 0.0 21.1 60.0 51.4 83.0 89.6 28.9 70.7 742 55.5
LFT-Net |34] 65.2 76.2 92.8 96.1 81.9 0.0 37.6 70.3 70.4 73.2 76.0 409 78.8 71.0 58.2
PVT [45) 67.30 - 91.18 9876 8623 031 34.21 49.90 6145 81.62 89.85 48.20 79.96 76.45 54.67
EPT [49 67.5 74.7 91.5 97.4 86.0 0.2 404 60.8 66.7 87.7 79.6 73.7 58.6 77.2 57.3
PatchFormer [89 - 68.1 - - - - - - - - - - - - - -
Point Transformer |7| 90.8 70.4 76.5 94.0 98.5 86.3 0.0 38.0 63.4 743 89.1 824 743 80.2 76.0 59.3
Stratified Transformer |51} | 91.5 72.0 78.1 - - - - - - - - - - - - -
TABLE 4 patch. Specifically, the self-attention mechanism of pair-wise

Comparative analysis between different point cloud Transformers in
terms of AP on the ScanNetV2 and SUN RGB-D object detection
datasets. AP means Average Precision. All results quoted were taken
from the cited papers.

Method ScanNetV2 SUN RGB-D
AP2s  APso  AP25  APxo
VoteNet [113] 586 335 577 .
3DETR [55] 62.7 375 56.8 30.1
Pointformer [35] 64.1 - 61.1 -
MLCVNet [53] 64.5 414 59.8 -
3DETR-m [55] 65.0 47.0 59.0 32.7
GroupFree3D [54] 69.1 52.8 63.0 45.2

be employed. Therefore, despite the rapid development of
3D Transformers, as an emerging technology, they still need
further exploration and improvement.

Based on the properties of Transformers and their suc-
cessful applications in the 2D domain, we pointed out sev-
eral potential future directions for 3D Transformers, hoping
it will ignite the further development of this technology.

7.1.1 Patch-wise Transformers

As mentioned in Sec. 3D Transformers can be divided
into two groups: Point-wise Transformers and Channel-
wise Transformers. Moreover, referring to the exploration
of Transformers in 2D image processing [87], we are able
to further divide Point-wise Transformers into Pair-wise
Transformers and Patch-wise Transformers based on the
operating form. The former calculates the attention weight
for a feature vector by a corresponding pair of points, while
the latter incorporates information from all points in a given

Transformers can be described as:

yi =y alw,x;) © Bz;),

JER;

(6)

where y; is the output feature, R; is the operating scope
of the self-attention module, ® is the Hadamard product,
B projects the feature x; to a new feature space by linear
layers, and a(xz;, x;) is utilized to measure the relationship
between z; and x;, which can be decomposed as:

oz, x5) = p(y(6(2i, 25))), ?)

where p is normalization function like softmax, v is a
mapping function that ensures §(x;, z;) has the same size
as B(z;), and 0 is a relation function, the most common
examples of which are:

Concatenation : 0(x;, ;) = [p(x;), ¥(x;)],
Summation : §(x;, x;) = p(x;) + ¥(z;),

Subtraction : 6(x;, x;) = @(x;) — ¥ (z;), 8)
Hadamard product : §(x;, x;) = p(x;) © ¥(z;),

Dot product : §(x;,x;) = p(x:) b (z;),

where the Dot product reduces this to a scalar attention oper-
ator, while the other forms reduce this to vector attention op-
erators. The subtraction-form vector attention has been used
in PT [7]. From the Eq.[6] we can see that the attention weight
a(x;,x;) is determined by a corresponding pair of point
features z; and x;. Pair-wise Transformers achieved com-
pelling performance in the 2D image processing and were
also commonly used in 3D point cloud processing. Nearly



all algorithms in Sec. can be considered as pair-wise
Transformers, where most of them used the Dot product.

Zhao et al. [87] also explored a family of patch-wise
Transformers in image processing, whose self-attention
mechanism can be expressed as:

yi= > alz,); © Blz;), ©)

JER;

where zy, is the patch of feature vectors in ¥;, o transforms
the zy, to a new tensor with the same spatial dimension-
ality, and a(xw,); is the j-th feature vector in this tensor.
Similar to pair-wise Transformers, a(zy,) can also be de-
composed as:

a(zg,) = p(v(6(zx,))), (10)
and J can be expressed as three different forms [87]:
Concatenation : §(xg,) = [p(x:), [V (x))]vjen.]
Star-product : §(xx,) = [p(2:)" ¥(z;)]vjen, 11

Dot product : §(zx,) = [o(2;) ¥ (xk)]vjken, -

By comparing Eq. [f|and [} we see that the latter aggregates
all feature vectors in R; to generate the weight matrix that
is applied to S(z;), instead of merely utilizing a pair of
features. In this way, patch-wise Transformers are able to
enhance the connections among different feature vectors,
and extract more robust short- and long-range dependen-
cies. However, since the feature vectors are arranged in a
particular order in xg,, patch-wise Transformers are not
permutation-equivariant, which may have some negative
effects on point cloud processing.

Currently, there is little patch-wise Transformer research
in the field of 3D point cloud processing. Considering the
advantages of patch-wise Transformers and their outstand-
ing performance in image processing, we believe that intro-
ducing patch-wise Transformers to point cloud processing
is beneficial to performance improvement.

7.1.2 Adaptive Set Abstraction

PointNet++ [4] proposed a Set Abstraction (SA) module
to extract the semantic features of the point cloud hierar-
chically. It mainly utilized FPS and query ball grouping
algorithms to achieve sampling point searching and lo-
cal patch construction respectively. However, the sampling
points generated by FPS tend to be evenly distributed in
the original point cloud, while ignoring the geometric and
semantic differences between different parts. For example,
the tail of the aircraft is more geometrically complex and
distinct than the fuselage. As such, the former needs more
sampling points to be described. Moreover, query ball
grouping focuses on searching the neighbor points only
based on the Euclidean distance. However, it ignores the
semantic feature differences among points, which makes it
easy to group points with different semantic information
into the same local patch. Therefore, developing an adap-
tive set abstraction is beneficial to improving the perfor-
mance of 3D Transformers. Recently, there have been several
Transformer-based methods in the 3D field exploring adap-
tive sampling [43]. But few of them made full use of the
rich short- and long-range dependencies generated by the
self-attention mechanism. In the field of image processing,
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Deformable Attention Transformer (DAT) proposed in [143]]
generated the deformed sampling points by introducing an
offset network. It achieved impressive results on compre-
hensive benchmarks with low computational footprint. It
will be meaningful to present an adaptive sampling method
based on the self-attention mechanism for the hierarchical
Transformer. Additionally, inspired by the superpixel [144]
in the 2D field, we argue that it is feasible to utilize the at-
tention map in 3D Transformers to obtain the “superpoint”
[145] for point cloud oversegmentation, converting point-
level 3D data into neighborhood-level data. As such, this
adaptive clustering technique can be used to replace the
query ball grouping method.

7.1.3 Self-supervised Transformer Pre-training

Transformers have shown impressive performance on NLP
and 2D image processing tasks. However, much of their
success stems not only from their excellent scalability but
also from large-scale self-supervised pre-training [83]. Vi-
sion Transformer [17] performed a series of self-supervision
experiments, and demonstrated the potential of the self-
supervised Transformer. In the field of point cloud pro-
cessing, despite the significant progress of supervised point
cloud approaches, point cloud annotation is still a labor-
intensive task. And the limited labeled dataset hinders the
development of supervised approaches, especially in terms
of the point cloud segmentation task. Recently, there have
been a series of self-supervised approaches proposed to deal
with these issues, such as Generative Adversarial Networks
(GAN) [146] in the 2D field, Auto-Encoders (AE) [147], [148],
and Gaussian Mixture Models (GMM) [149]. These methods
used auto-encoders and generative models to realize self-
supervised point cloud representation learning [96]. Their
satisfactory performances have demonstrated the effective-
ness of the self-supervised point cloud approaches. How-
ever, few self-supervised Transformers have been currently
applied to 3D point cloud processing. With the increasing
availability of large-scale 3D point clouds, it is worthwhile
to explore the self-supervised 3D Transformers for point
cloud representation learning.

Overall, Transformers have only started to be applied to
point cloud-related tasks. This research area has much space
for innovations, especially by integrating breakthroughs
from NLP and 2D computer vision.

7.2 Conclusion

Transformer models have attracted widespread attention
in the field of 3D point cloud processing, and achieved
impressive results in various 3D tasks. In this paper, we
have comprehensively reviewed recent Transformer-based
networks applied to point cloud-related tasks, such as point
cloud classification, segmentation, object detection, registra-
tion, sampling, denoising, completion and other practical
applications. We first introduced the theory behind the
Transformer architecture, and described the development
and applications of 2D and 3D Transformers. Then we
utilized three different taxonomies to categorize the current
methods found in literature into multiple groups, and an-
alyzed them from multiple perspectives. Additionally, we
also described a series of self-attention variants that aimed



to improve the performance and reduce the computational
cost. In terms of point cloud classification, segmentation and
object detection, brief comparisons of the reviewed methods
were provided in this paper. Finally, we suggested three
potential future research directions for the development of
3D Transformers. We hope this survey gives researchers a
comprehensive view of 3D Transformers, and drives their
interest to further innovate the research in this field.
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