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Abstract

Can you find me? By simulating how humans to discover
the so-called ‘perfectly’-camouflaged object, we present a
novel boundary-guided separated attention network (call
BSA-Net). Beyond the existing camouflaged object detection
(COD) wisdom, BSA-Net utilizes two-stream separated at-
tention modules to highlight the separator (or say the cam-
ouflaged object’s boundary) between an image’s background
and foreground: the reverse attention stream helps erase the
camouflaged object’s interior to focus on the background,
while the normal attention stream recovers the interior and
thus pay more attention to the foreground; and both streams
are followed by a boundary guider module and combined to
strengthen the understanding of the boundary. The core de-
sign of such separated attention is motivated by the COD pro-
cedure of humans: find the subtle difference between the fore-
ground and background to delineate the boundary of a cam-
ouflaged object, then the boundary can help further enhance
the COD accuracy. We validate on three benchmark datasets
that our BSA-Net is very beneficial to detect camouflaged ob-
jects with the blurred boundaries and similar colors/patterns
with their backgrounds. Extensive results exhibit very clear
COD improvements on our BSA-Net over sixteen SOTAs.

Introduction

Camouflaged object detection (COD) from single images
aims to find an object that has colors or patterns very similar
to but with intrinsic different attributes from its background.
A successful effort of COD will facilitate many practically
meaningful applications of polyp segmentation (Fan et al.
2020b), lung infection segmentation (Wu et al. 2021), recre-
ational art (Chu et al. 2010), and even the rescue mission in
extreme weather and anti-military camouflage.
Traditionally, one may adapt salient object detection
(SOD) techniques (Zhao et al. 2019; Qin et al. 2019; Wei
et al. 2020; Wu, Su, and Huang 2019b; Feng, Lu, and Ding
2019) to the task of COD; or one may develop various hand-
crafted features to deal with COD. Unfortunately, the cam-
ouflaged objects often conceal themselves in the background
as much as possible instead of highlighting themselves as
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salient objects do. Those SOD techniques or even the elab-
orate hand-crafted COD features are not sensitive enough to
capture subtle differences between any camouflaged object
and its background, leading to poor COD results.

Recently, many promising COD methods based on deep
learning have been proposed. For example, inspired by the
hunting process of a hunter, SINet (Fan et al. 2020a) pio-
neers to collect a large-scale COD dataset called COD10K,
and utilizes a search module and an identification module
to locate and identify camouflaged objects. MirrorNet (Yan
et al. 2021) assumes that changing the perspective of the
same scene can enhance the difference between an object
and its background. Rank-Net (Lv et al. 2021) proposes a
model to locate, segment and rank camouflaged objects si-
multaneously, in which the rank module can rank the capa-
bility of COD. However, these efforts seldom consider to
simulate how humans to detect camouflaged objects, which
cannot well vanquish the camouflaged objects with their am-
biguous boundaries to the backgrounds.

You may recall how to detect potential camouflaged ob-
jects in an image: you first search throughout the image to
find the possible region that contains the camouflaged ob-
ject, then you focus on both the foreground and background
in order to find the inconspicuous difference between them.
When you gradually discover the difference between them,
the boundary of the camouflaged object is highlighted. Fi-
nally, you utilize the boundary as an enhancement guidance
to improve the COD capability. Inspired by this observation,
we propose an effective boundary-guided separated atten-
tion network for the COD task (termed as BSA-Net).

Beyond the existing COD wisdom, BSA-Net is a coarse-
to-fine learning model, which exploits three main modules
to help improve the COD results: the Residual Multi-scale
Feature Extractor (RMFE) to capture rich context informa-
tion, the Separated Attention (SEA) module to handle the
sensitivity-invariance dilemma, and the Boundary Guider
(BG) to accurately highlight the boundary of a camouflaged
object. Specifically, SEA contains two streams: the normal
attention stream and the reverse attention stream focus on
the foreground and background of the input image respec-
tively, and then integrate the two streams for collaboration.
Since the boundary of any camouflaged object (i.e., the sep-
arator of foreground and background of an image) is difficult



to detect, we utilize the BG module to enhance the boundary
detection capability after each stream.
Our contributions are three-fold:

* By simulating how humans to detect camouflaged ob-
jects, we propose a novel COD network, which leverages
the proposed separated attention modules to improve the
performance of cutting-edge COD models.

* We design a refinement paradigm in which a simple
yet effective boundary guider is proposed to embed the
boundary information into the coarse feature map, form-
ing our boundary-guided separated attention network.

* BSA-Net is validated on three popular COD datasets and
achieves the most outstanding performance among six-
teen SOD and COD methods, especially when the cam-
ouflaged objects have very blurred boundaries and simi-
lar colors/patterns with their backgrounds.

Related Work
Salient Object Detection (SOD)

SOD aims to localize the most “eye-catching” object(s) in an
image, and segment it at the pixel level to generate a binary
map. Since saliency and camouflage are slightly opposite to
each other, we can regard salient objects as negative samples
in the COD tasks. The SOD methods can be potentially ex-
ploited to train on the camouflaged object datasets for COD,
which will be compared with our proposed BSA-Net.

Existing SOD methods are based on either feature fusion
or boundary information. The feature-fusion strategy is ded-
icated to integrating multi-scale features to enhance the per-
formance of SOD models. For example, Wei et al. (Wei,
Wang, and Huang 2020) propose a selective fusion scheme
to suppress redundant features and adopt a multi-layer feed-
forward mechanism to supplement the output features of the
previous layers and eliminate the differences between them.
Zhu et al. (Zhu et al. 2019) propose an attentional dense
atrous spatial pyramid pooling (AD-ASPP) module to ex-
pand the receptive field which refines the feature maps of
each layer. Pang et al. (Pang et al. 2020) integrate feature
maps of adjacent levels and fuse multi-scale information.
The boundary-aware strategy utilizes boundary information
to optimize the saliency detection influence. Qin et al. (Qin
et al. 2019) leverage a supervised encoder-decoder structure
and a residual refinement module for coarse-to-fine detec-
tion. Wu et al. (Wu, Su, and Huang 2019b) employ the Cross
Refinement Unit (CRU) to refine the saliency map and the
boundary map at the same time. Zhao et al. (Zhao et al.
2019) obtain salient boundary features and couple salient
objects at various resolutions together.

Camouflaged Object Detection (COD)

Due to the fact that the patterns and colors of camouflaged
objects are similar to the background, it is difficult to sep-
arate them from the background. Traditional COD methods
mostly utilize hand-crafted features, such as color, convex
intensity, boundary, texture, and brightness (Bhajantri and
Nagabhushan 2006; Xue et al. 2015; Huerta et al. 2007;
Tankus and Yeshurun 2001; Kavitha, Rao, and Govardhan
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2011) to distinguish camouflaged objects from their back-
grounds. However, these methods are only suitable for sim-
ple uneven backgrounds. Since the foreground and back-
ground are highly similar, these methods are often deceived
by camouflaged objects, leading to poor detection results.

Recent works resort to the huge capacity of deep neural
networks to recognize the more complex properties of cam-
ouflage objects, and have acquired the outstanding perfor-
mance (Sun et al. 2021; Liu, Zhang, and Barnes 2021; Zhang
et al. 2021; Li et al. 2021; Mao et al. 2021). Le et al. (Le
et al. 2019) propose an end-to-end network that employs a
strategy of first classifying the camouflaged image and then
segmenting the camouflaged objects. Fan et al. (Fan et al.
2020a) design a search module and an identification mod-
ule based on the motivation of searching for prey first and
then identifying prey during hunting. Ren et al. (Ren et al.
2021) propose a texture-aware module to amplify the subtle
texture difference between the camouflaged object and the
background. Yan et al. (Yan et al. 2021) take both the origi-
nal and flipped images as input, and deliver them to the dual-
stream mirror network to achieve the intention of changing
the viewpoint in the same scene to identify the camouflaged
object. Mei et al. (Mei et al. 2021) propose PFNet which is
able to position the potential camouflaged objects and then
wipe out the false positive and false negative areas which
can distract the segmentation results. Zhai et al. (Zhai et al.
2021) propose a Mutual Graph Learning model for COD,
which decouples the image into two feature maps for locat-
ing the object and capturing the boundary. Different from the
existing methods, inspired by the way of humans to recog-
nize camouflaged objects, our method pays more attention to
the synergy of the foreground and background information
to highlight the boundaries of objects, thereby improving the
accuracy of the model.

Methodology

By simulating how humans to find camouflaged objects, we
raise an intriguing question: Does the synergy of leverag-
ing the background by erasing the foreground, and focusing
on the foreground by ignoring the background enhance the
capability of cutting-edge COD networks? To answer it, we
present the boundary-guided separated attention network for
COD. BSA-Net captures multi-scale feature information to
locate where possibly the object is, then employs separated
attention to excavate deep information in the foreground and
background of the image, and coalesce the additional bound-
ary information in order to strengthen the detection perfor-
mance at the junction of the foreground and the background.
Finally, it uses shuffle attention (Yang 2021) and feature fu-
sion mechanisms to refine features.

Network Architecture

The architecture of BSA-Net is shown in Figure 1. For the
input I € RWXHX3 where W and H denote the width
and height of an image, we employ Res2Net as our back-
bone to extract the multi-level features F;, i € {1,2,3,4,5}.
Generally, BSA-Net is a coarse-to-fine model. First, we in-
put Fy, Fs, Fy, F5 into the residual multi-scale feature ex-
tractors to capture features of different receptive fields, then
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Figure 1: Overview of BSA-Net. BSA-Net simulates the procedure of how humans to detect camouflaged objects. We adopt
Res2Net as the backbone encoder. After capturing rich context information by the Residual Multi-scale Feature Extractor
(RMFE), we design the Separated Attention (SEA) module to distinguish the subtle difference of foreground and background.
The Boundary Guider (BG) module is included in the SEA module to strengthen the model’s ability to understand the boundary.
Finally, we employ the Shuffle Attention (SHA) block and a feature fusion module to refine our COD result.

we utilize separated attention blocks containing the nor-
mal attention stream and reverse attention stream to focus
on both the foreground and background. The coarse maps
C;,i € {1,2,3,4} are obtained from the reverse attention
stream of separated attention blocks, which are supervised
by the ground truth. Furthermore, we design an effective
boundary detection network to obtain the boundary map
BM, which is exploited in the boundary guider module in
separated attention blocks. After that, the shuffle attention
module is utilized to make the model pay attention to the
informative channels. Finally, we obtain 4 refined maps of
the first round predictions marked as R;,i € {1,2,3,4}. We
choose R; as the final output in the inference stage.

Residual Multi-scale Feature Extractor

Since the ResNet-based backbone networks use convolution
operations serially, they cannot extract abundant context in-
formation. Moreover, only using 3 X 3 convolutions is diffi-
cult to obtain multiple-scale features in one stage, which is
adverse to image understanding and segmentation. Inspired
by the Inception module and Res2Net (Gao et al. 2021)
block, we develop a Residual Multi-scale Feature Extractor
(RMFE) to solve these problems.

RMFE adopts the 3 x 3 convolution in parallel while
employing residual blocks to enlarge the receptive fields
successively. To be more specific, for an input feature F;,
we utilize 4 branches to capture different characterizations.
Each branch is equipped with a 1 x 1 convolution to reduce
the number of channels, a 1 x 3 and 3 x 1 asymmetric con-
volution for reducing the computational load. The output of
each branch is added to the input of the next branch. The
general formulation of the operation is defined as

Conv,.(F;)
Conv,.(F; ® Bouty_1)

k=1

i
BWt—{ k=2,3,4

(1)
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where F; denotes the ith feature map produced by the
backbone network, k is the branch number, Bout}C denotes
the output of the kth branch, @ is element-wise addition,
Conw,() denotes the stacked convolutional layer mentioned
above. After that, we concatenate the outputs of 4 branches
followed by a 1 x 1 convolution to adjust the channel to 64
and add it to the input feature F;. Finally, we obtain the out-
put feature RM FE;,i € {2,3,4,5} embedded with multi-
scale information which is computed as

RMFE; = Conv(F;) ® Conv(Cati_,(Boutk)), (2)

where Coonwv() denotes 1 x 1 convolution, Cat}_, denotes
the concatenation of all 4 branches. The overall structure of
RMFE is shown in Figure 2.
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Figure 2: Structure diagram of RMFE. It utilizes stacked
residual blocks to enlarge the receptive field layer by layer.
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Separated Attention

When delineating salient/camouflaged objects, the informa-
tion at the boundary between the foreground and back-
ground is an important cue. The fusion of information from



the interior of the object and the background allows our eyes
to perceive the boundary information in an effective man-
ner. Inspired by (Chen et al. 2018), we adopt the mechanism
called separated attention, which is the combination of the
reverse attention and normal attention to focus on the back-
ground and foreground respectively. The module contains
two streams. In the first stream, we erase the internal details
of the objects to focus on the background. Meanwhile, the
internal information of the object is recovered in the second
stream to focus on the foreground. Through the synergy of
foreground and background information, the separator be-
tween them is highlighted, which is the boundary of the ob-
ject. In detail, each stream of the separated attention is mul-
tiplied by the corresponding attention map. The foreground
attention map in the ith layer is the result of upsampling on
the coarse map of the (i+1)th layer marked as C; 1, written
as Wyqi = 0(Cit1), where o denotes the sigmoid function,
and the background attention map is the foreground atten-
tion map in the ¢th layer subtracted from 1, which is de-
fined as Wye; = 1 — 0(C;11). Please note that we expand
the channel of all attention maps to 64 before element-wise
multiplication. The attention part can be written as
Ba; = Out; = Convs(RMFE; ® expand(Wyai)), (3)
Fa; = Convs(RMFE; ® expand(Wta;)),  (4)
where RM F'E; denotes the ith layer feature map produced
by the RMFE module, Wy,; and W;,; are attention maps,
expand() is to expand the channel of attention maps to the
same as RMF'E;, Conv, is a 1 x 1 convolution, & indi-
cates the multiplication operation. Out; is the coarse out-
put map of the ith layer, which is supervised by the GT
map, Ba; and F'a; are the feature maps after the atten-
tion operation. To discover the contribution of each stream
in SEA, we adopt Multi-scale Channel Attention Module
(MS-CAM) (Dai et al. 2021), a dual-branch block to get
the weight of feature maps in global and local scale. In
detail, the weight matrix W can be written as W (X)
G(o(G(X)))+G(o(L(X))). G(X) leads with a global av-
erage pooling layer to discover the global information, while
L(X) utilizes point-wise convolution to extract local fea-
ture. We use Ba; and Fa; as the input to MS-CAM. The
employment of MS-CAM is beneficial to represent different
scales of features in a more general way. After each atten-
tion module, we add a Boundary Guider module to enhance
the model’s ability to understand the boundary, so that the
boundaries can be more prominent after the two streams are
merged. The introduction of Boundary Guider will be cov-
ered in the next section. In the end, we integrate the infor-
mation of these two streams together by a simple addition
operation. The proposed SEA module can be written as

SEAF; = BG;(W(Ba; + Fa;) ® Ba;, Bmap), (5)
SEAB; = BG;((1-W(Ba;+ Fa;))® fa;, Bmap), (6)
SEA; = SEAF; ¢ SEAB,; i =2,3,4, (7)

where BG,; denotes the Boundary Guider module, SEAF;
and SEAB; are the output results of the foreground and
background streams respectively, SEA; is the output of

SEA module, Bmap is the predicted boundary map. The
structure of the separated attention map is shown in Figure 3.
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Figure 3: The output of the deep layer is inverted as the
weight of the shallow feature map. The normal attention
stream and the reverse attention stream focus on the fore-
ground and background respectively. By coordinating the
foreground and background information, the boundary of
camouflaged object is highlighted. The boundary informa-
tion is utilized to find camouflaged object.

Boundary Guider

For the SOD task, it is known that predicting the pixels
which are close to the boundary of the object(s) is compli-
cated. There are two main reasons for this situation. One
is that the distribution of pixels around the boundary is ab-
normal, and the other is that SOD is a high-resolution task,
which requires pixel-level classification. Since many con-
volution and pooling layers are used to extract features, it
requires many upsampling operations like interpolation to
restore the resolution, which causes the loss of spatial infor-
mation to some extent. Such the problem is more obvious in
the COD task, since camouflaged objects are concealed and
merged in the backgrounds, making the boundaries more
blurred. Hence, we try to integrate the boundary informa-
tion into the feature space to enhance the sensitivity of the
model to the boundary. In the beginning, we try to use the
ground-truth boundary map (the gradient map of a binary
ground truth) as the guidance map, and find that the results
are surprisingly good. This is because, with the prior knowl-
edge of an object’s boundary, we can easily recognize the
object which has similar patterns to the background. There-
fore, the boundary information plays an important role in the
COD task. However, the ground-truth map is not available in
the inference stage. We have to train a network to obtain the
boundary map in a supervised way.

In detail, we design a simple network for boundary detec-
tion, which concatenates four layer features from the back-
bone and utilizes a convolution to obtain the boundary map
supervised by the boundary map of GT. As shown in Fig-
ure 4, the boundary prediction result BM and the feature
maps produced in the SEA module marked as Attention
Stream Map (ASM) are delivered to a conditional batch
normalization (BG) module. In general batch normalization,
the parameters of the affine operation (-y and () are unable to
learn enough information without prior knowledge. To ad-



dress this problem, we use a boundary map to learn these
affine parameters. We consider the boundary prediction as
our condition and such a module embeds the spatial infor-
mation into the feature map, which allows the original fea-
ture map to learn better boundary features. The formulation
of the operation is defined as

BGM; = CB(ASM;) ® v(BM) @ (BM), (8)
where C'B denotes a 3 x 3 convolution and batch normal-
ization, ASM; represents the feature map generated in the
SEA module mentioned above, «y and /3 are the affine param-
eters, each of which contains a 3 x 3 convolutional layer to
encode information about the boundary map and enlarge the
channel to 64, which is the same as coarse feature maps.

Boundary
Guided Map
(BGM)

\ 4
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Figure 4: Illustration of the BG module, which uses adaptive
space normalization to embed the boundary information into
the feature map effectively.

Loss Function

In pixel-wise binary classification tasks like SOD and COD,
the binary cross-entropy loss is widely used in many scenar-
ios. But it has an obvious shortcoming when the number of
foreground pixels is far less than that of background pixels,
the model is heavily biased towards the background, leading
to poor performances. Inspired by (Dong et al. 2021), we as-
sign a weight factor for each pixel, which can be written as
w = 0| P, — Gy|. The weighted BCE loss is defined as
N
Lwbce = — Y w[Gnln(Py)+ (1= Gy)in(1—P,)], (9)
n=1
where P, and G, are the values at pixel n in the predicted
map and ground-truth label, which gives larger weights to
pixels that are difficult to predict. In addition, we use the
IOU loss for map-level supervision. We combine the two
loss functions as the total loss for supervision formulated as
L= Lwce + Liou- (10)
Our model includes 9 supervised outputs, including 4 coarse
maps (C1,C2,C3,C4), 4 refined maps (R1, R2, R3, R4)
and 1 boundary map B. Thus, the final total loss function
can be represented as

4
L= [L:(Ci,G) + Li(Ri, G)] + Lyce(B, BG), (11)
i=1
where BG denotes the boundary ground-truth label and 7 is
the index of predictions.
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Experiment

Settings
Datasets We evaluate our BSA-Net on three
benchmark datasets: CAMO (Le et al. 2019),

CHAMELEON (Skurowski et al. 2018) and COD10K (Fan
et al. 2020a). In CAMO, the camouflaged object image set
consists of 1250 images (1000 images in the training set and
250 images in the test set), and the non-camouflaged object
images are collected from MS-COCO (1000 images in the
training set and 250 images in the test set). CHAMELEON
is a small dataset containing only 76 images. COD10K
is currently the largest dataset containing 6000 training
images and 4000 test images. Here, both the training set and
the test set are the same as (Fan et al. 2020a).

Implementation details We implement BSA-Net on Py-
Torch (Paszke et al. 2019). Res2Net (Gao et al. 2021), pre-
trained on ImageNet, is utilized to initialize the backbone
(i.e., blockl1 to block5). We use kaiming-normal to initialize
all the convolutional layers and linear layers. We utilize the
Adam optimizer to train our model. The learning rate and
weight decay are set to 8e-5 and 0.1, respectively. During
training, the batch size is set to 36 and the maximum epoch
is set to 35. The input image is simply resized to 384 x 384
and then fed into the network to obtain the predicted binary
map. The bilinear interpolation operation for image resiz-
ing. All the experiments are running with an Nvidia GeForce
RTX 3090 GPU (with 24GB memory). The code is available
at https://github.com/WolfberryCoke/BSA-Net.

Evaluation metrics We use four evaluation metrics that
are widely-used in image segmentation, including E-
measure (Fan et al. 2018), S-measure (Fan et al. 2017),
weighted F-measure (Margolin, Zelnik-Manor, and Tal
2014) and Mean Absolute Error (Perazzi et al. 2012) de-
noted as By, S, F, 3 and M AFE, respectively. E-measure is
an enhanced-alignment measure that combines local pixels
with image-level average values so that both local and global
information can be considered simultaneously. S-measure is
a structure-based metric employed to calculate the structural
similarity of objects and regions. Weighted F-measure is
an improved version of F-measure, utilizing weighted preci-
sion and recall. Mean absolute error is a pixel-level indi-
cator defined to calculate the pixel-wise difference between
the predicted map and the ground-truth map.

Comparison with SOTA Methods

Since COD is relatively new, there are not many methods
about this topic, we also compare our method with some
typical salient object detection (SOD) methods. Totally, we
compare our BSA-Net with 16 state-of-the-art methods, in-
cluding UNet++ (Zhou et al. 2018), PiCANet (Liu, Han, and
Yang 2018), MSRCNN (Huang et al. 2019), BASNet (Qin
et al. 2019), PFANet (Zhao and Wu 2019), CPD (Wu, Su,
and Huang 2019a), HTC (Chen et al. 2019), EGNet (Zhao
et al. 2019), ANet-SRM (Le et al. 2019), SINet (Fan et al.
2020a), PraNet (Fan et al. 2020b), MCIF-Net (Dong et al.
2021), TANet (Ren et al. 2021), R-MGL (Zhai et al. 2021),
PFNet (Mei et al. 2021) and Rank-Net (Lv et al. 2021).
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Figure 5: Visual comparisons with SOTAs. BSA-Net produces the COD results with clear boundaries while SOTAs mostly not.

Quantitative comparisons We exploit all four metrics to
compare with SOTAs. Table 1 summarizes the results of all
methods on three benchmark datasets, where the best ones
are highlighted in bold. First, as observed, these SOD meth-
ods are not sensitive enough to capture subtle differences be-
tween the camouflaged objects and their backgrounds, since
the camouflaged objects in the datasets often conceal them-
selves ‘perfectly’ in the background instead of highlight-
ing themselves as the salient objects do. Second, our BSA-
Net outperforms all the COD methods in terms of the four
metrics. For example, compared to SINet on the COD10K
dataset, our method increases S, by 0.047, £, by 0.085,
Fg by 0.148 and M AFE by 0.017.

Visual comparisons Figure 5 shows visual comparisons
of different methods. As illustrated, our method achieves
better results compared to these SOTA methods, which are
consistent to the quantitative comparisons. We observe that
our proposed BSA-Net can accurately capture the camou-
flaged objects, and can reduce omissions compared to the
other methods. Simultaneously, as shown in the Row 2 and
Row 6, our method is more accurate in detecting the bound-
ary of the object than the other methods. That is, it can obtain
more detailed boundaries, which also verifies the effective-
ness of our utilization of boundary information. It should be
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noted that our method also has good performance in detect-
ing small camouflaged objects, as shown in the Row 1, Row
4 and Row 7. In a word, the binary map obtained by our
method is clearer and more accurate.

Ablation Study

We conduct ablation studies to demonstrate the effectiveness
of our components, including the SEA and BG modules.
Model a is composed of the backbone network Res2Net
and Residual Multi-scale Feature Extractor (RMFE) mod-
ule; Model b adds the separated attention (SEA) module
based on Model a; Model ¢ adds boundary guider (BG) on
the Model a, and Model d is our final model. We evaluate
the 4 models on three benchmark datasets. Quantitative ex-
perimental results are shown in Table 2.

Effectiveness of Separated Attention By comparing
Model a with Model b, we observe that Model b outperforms
Model a in terms of all the evaluation metrics. It means
by adding the separated attention modules, our model can
perform better. The apparent improvement in the evaluation
metrics shows that SEA can highlight the boundaries of ob-
jects by focusing on the foreground and background infor-
mation separately, thereby improving the accuracy of COD.



Methods CAMO CHAMELEON COD10K

Sat Est F5t MAE] || Sat Egt FFt MAE] || Sa? FEst FFT MAE]
2018 UNet++ 0.599 0.653 0.392 0.149 0.695 0.762 0.501 0.094 0.623 0.672 0.350 0.086
2018 PiCANet 0.609 0.584 0.356 0.156 0.769 0.749 0.536 0.085 0.649 0.643 0.322 0.090
2019 MSRCNN | 0.617 0.669 0.454 0.133 0.637 0.686 0.443 0.091 0.641 0.706 0.419 0.073
2019 BASNet 0.618 0.661 0.413 0.159 0.687 0.721 0.474 0.118 0.634 0.678 0.365 0.105
2019 PFANet 0.659 0.622 0.391 0.172 0.679 0.648 0.378 0.144 0.636 0.618 0.286 0.128
2019 CPD 0.726  0.729  0.550 0.115 0.853 0.866 0.706 0.052 0.747 0.770  0.508 0.059
2019 HTC 0476 0442 0.174 0.172 0.517 0489 0.204 0.129 0.548 0.520 0.221 0.088
2019 EGNet 0.732  0.768 0.583 0.104 0.848 0.870 0.702 0.050 0.737 0.779  0.509 0.056
2019 ANet-SRM | 0.682 0.685 0.484 0.126 k3 k3 k3 k3 k3 3 I k3
2020 SINet 0.751 0.771  0.606 0.100 0.869 0.891 0.740 0.044 0.771 0.806 0.551 0.051
2020 PraNet 0.769 0.824 0.663 0.094 0.860 0.907 0.763 0.044 0.789 0.861 0.629 0.045
2021 MCIF-Net 0.784 0.845 0.677 0.084 I kS kS ko 0.787 0.872 0.636 0.042
2021 TANet 0.793 0.834 0.690 0.083 0.888 0911 0.786 0.036 0.803 0.848 0.629 0.041
2021 R-MGL 0.775 0.847 0.673 0.088 0.893 0923 0.813 0.030 0.814 0.865 0.666 0.035
2021 PENet 0.782 0.841 0.695 0.085 0.882 0.931 0.810 0.033 0.800 0.877 0.660 0.040
2021 Rank-Net 0.787 0.838 0.696 0.080 0.890 0.935 0.822 0.030 0.804 0.880 0.673 0.037
Ours 0.796 0.851 0.717 0.079 0.895 0.946 0.841 0.027 0.818 0.891 0.699 0.034

Table 1: Comparisons with SOTAs for COD on three benchmark datasets. The best results are highlighted in bold.

odel CAMO-Test CHAMELEON COD10K-Test

Sal Ey1 FFT MAE] [ Sal Eof FFT MAE] | Saf EsT F5T MAFE]
a. Baseline 0.783 0.840 0.691 0.083 0.879 0.933 0.807 0.032 0.805 0.880 0.672 0.037
b. Baseline+SEA | 0.796 0.854 0.716 0.080 0.882 0.934 0.815 0.030 0.811 0.881 0.685 0.037
c. Baseline+BG 0.786 0.848 0.704 0.081 0.875 0.921 0.808 0.031 0.812 0.883 0.686 0.036
d. Ours 0.796 0.851 0.717  0.079 0.895 0.946 0.841  0.027 0.818 0.891 0.699  0.034

Table 2: Ablation study

Effectiveness of Boundary Guider In order to validate
the effectiveness of the boundary map guider, we compare
the results of Model b and Model d. After removing the
boundary director, the performance of our model decreases.
Since the separator between the foreground and the back-
ground, that is, the boundary of the camouflaged object con-
tains fewer pixels, we need to exploit the BG module to
embed additional boundary information into the feature to
strengthen the model’s understanding of boundary. With the
help of boundary guider, the predicted result can maintain a
clear boundary structure of the object.

Conclusion

We propose a novel boundary-guided separated attention
network for camouflaged object detection, called BSA-Net.
Our BSA-Net well responds to the intriguing question if the
synergy of leveraging the background by erasing the fore-
ground, and focusing on the foreground by ignoring the
background enhance the capability of cutting-edge COD
networks. BSA-Net is inspired by the way of how humans
to find camouflaged objects in an image: humans pay atten-
tion to the foreground and background of the image to find
the difference between them, and when the difference be-
tween them is distinguished, the outline of the object can be
depicted. Therefore, the boundary information will enhance
the capability of camouflaged object detection. Based on the
above observation, we first utilize the Residual Multi-scale
Feature Extraction module to extract multi-scale features.
Then, we use the two-stream Separated Attention modules:
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one stream focuses on the foreground and ignores the back-
ground, and the other stream focuses on the background
while erasing the foreground. After each stream, we exploit
the Boundary Guider module to embed the boundary infor-
mation into the features. Finally, the two stream are merged
to highlight the boundary of the camouflaged object and
strengthen the model’s ability to detect the boundary of the
object. We conduct experiments on three COD datasets. The
experimental results show that our method achieves very
competitive performance compared with the sixteen SOTA
methods. In the future, we will consider to generate camou-
flaged objects from natural images and use depth images.
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