
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

AGConv: Adaptive Graph Convolution on 3D
Point Clouds

Mingqiang Wei, Zeyong Wei, Haoran Zhou, Fei Hu, Huajian Si, Zhilei Chen, Zhe Zhu, Jingbo Qiu, Xuefeng
Yan, Yanwen Guo, Jun Wang, and Jing Qin

Abstract—Convolution on 3D point clouds is widely researched yet far from perfect in geometric deep learning. The traditional wisdom
of convolution characterises feature correspondences indistinguishably among 3D points, arising an intrinsic limitation of poor
distinctive feature learning. In this paper, we propose Adaptive Graph Convolution (AGConv) for wide applications of point cloud
analysis. AGConv generates adaptive kernels for points according to their dynamically learned features. Compared with the solution of
using fixed/isotropic kernels, AGConv improves the flexibility of point cloud convolutions, effectively and precisely capturing the diverse
relations between points from different semantic parts. Unlike the popular attentional weight schemes, AGConv implements the
adaptiveness inside the convolution operation instead of simply assigning different weights to the neighboring points. Extensive
evaluations clearly show that our method outperforms state-of-the-arts of point cloud classification and segmentation on various
benchmark datasets. Meanwhile, AGConv can flexibly serve more point cloud analysis approaches to boost their performance. To
validate its flexibility and effectiveness, we explore AGConv-based paradigms of completion, denoising, upsampling, registration and
circle extraction, which are comparable or even superior to their competitors. Our code is available at
https://github.com/hrzhou2/AdaptConv-master .

Index Terms—Adaptive graph convolution, Point cloud analysis, Geometric deep learning

F

1 INTRODUCTION

P Oint clouds are a standard output of 3D sensors, e.g., LiDAR
scanners and RGB-D cameras [1]. As the commonly-used

shape representation, point clouds preserve the original geometric
information in 3D space with a very simple yet flexible data
structure [2], [3], [4]. A variety of applications arise with the
fast advance of point cloud acquisition techniques, including
robotics, autonomous driving and high-level semantic analysis.
Recent years have witnessed considerable attempts to generalize
convolutional neural networks (CNNs) to point clouds for 3D
analysis and generation [5], [6]. However, unlike 2D images which
are organized as regular grid-like structures, 3D points are un-
structured and unordered, discretely distributed on the underlying
surface of a sampled object.

The common ways of learning on point clouds are to convert
them into regular 2D grids, 3D voxels or to develop hand-crafted
feature descriptors, on which traditional 2D/3D CNNs can be
naturally applied [7], [8], [9], [10]. Such solutions, however, often
introduce excessive memory cost and are difficult to capture fine-
grained geometric details. To handle the irregularity of point
clouds without conversions, PointNet [11] applies multi-layer
perceptrons (MLPs) independently on each point, which is the
pioneering work to directly process sparse 3D points.

More recently, the very promising graph-like structures are
explored for point cloud analysis. Graph CNNs (GCNs) [12],
[13], [14], [15] describe a point cloud as graph data according
to the spatial/feature similarity between points, and generalize
2D convolutions on images to 3D data. GCN-based methods

M. Wei, Z. Wei, F. Hu, H. Si, Z. Chen, Z. Zhu, J. Qiu, X. Yan and J. Wang are
with the School of Computer Science and Technology, Nanjing University of
Aeronautics and Astronautics, Nanjing, China.
H. Zhou and Y. Guo are with the State Key Laboratory for Novel Software
Technology, Nanjing University, Nanjing, China.
J. Qin is Hong Kong Polytechnic University, Hong Kong, China.

2

3

4

1

Ƹ𝑒2
Ƹ𝑒3

Ƹ𝑒4

(c)

2

3

4

1

(a)

2

3

4

1

(b)

𝑎2 𝑎3

𝑎4

Fig. 1. Illustration of adaptive kernels and fixed kernels in the convolu-
tion. (a) The standard graph convolution applies a fixed/isotropic kernel
(black arrow) to compute features for each point indistinguishably. (b)
Based on these features in (a), several attentional weights ai are as-
signed to determine their importance. (c) Differently, AGConv generates
an adaptive kernel êi that is unique to the learned features of each point.

have shown a great ability to understand the contextual features
and achieved much higher processing accuracy (e.g., point cloud
segmentation) than the pointwise feature-based methods. In order
to process an unordered set of points with varying neighborhood
sizes, standard graph convolutions harness shared weight functions
over each pair of points to extract the corresponding edge feature.
This leads to a fixed/isotropic convolution kernel, which is applied
identically to all point pairs while neglecting their different feature
correspondences. Intuitively, for points from different semantic
parts of a same point cloud (see the neighboring points in Fig. 1),
the convolution kernel should be able to distinguish them and

ar
X

iv
:2

20
6.

04
66

5v
1

 [
cs

.C
V

]
 9

 J
un

 2
02

2

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

determine their individual contributions.
To address this drawback, several approaches [14], [16] are

proposed inspired by the idea of attention mechanism [17], [18].
As shown in Fig. 1 (b), proper attentional weights ai correspond-
ing to the neighboring points are assigned, trying to identify their
different importance when performing the convolution. However,
these methods are, in principle, still based on the fixed kernel
convolution, as the attentional weights are just applied to the
features obtained similarly (see the black arrows in Fig. 1 (b)).
In this regard, attentional convolutions cannot solve the inherent
limitations of current graph convolutions, making it still difficult to
capture the delicate geometric features of a point by considering
its structural connections to its neighboring points distinctively
rather than uniformly. Considering the intrinsic isotropy of current
graph convolutions, these attempts are still limited for detecting
the most relevant part in the neighborhood.

In this paper, we propose a novel graph convolution operator to
more thoroughly address the inherent yet long-standing limitation
of traditional GCNs, in order to more effectively capture the
geometric features of a point by more precisely harnessing its
geometric correlations with its neighboring points; we call the
operator adaptive graph convolution (AGConv). In the proposed
AGConv, we adaptively establish the relationship between a pair
of points according to their feature attributes instead of using fixed
kernels; to our knowledge, this is the first time. Such adaptiveness
represents the diversity of kernels applied to each pair of points
deriving from their individual features, which are capable of more
accurately reflecting the underlying geometric characteristics of
the objects when compared with the uniform kernels. Furthermore,
we explore several design choices for feature convolution, offering
more flexibility to the implementation of AGConv. AGConv can
be easily integrated into existing GCNs for point cloud analysis by
simply replacing the existing isotropic kernels with the adaptive
kernels êi generated from AGConv, as shown in Fig. 1 (c).

This paper is extended from our previous work [19]. The
contents and key features newly added from [19] are listed as:

1) We detail the design of kernel function for AGConv (refer
to Fig. 4), which helps to follow our released source code. We
also fully discuss the influence brought by the spatial transform
network (STN) for the segmentation task. In ablation study, we
replace the AGConv layers with the attentional convolution layers
to show its better performance. To verify the practicability of
AGConv, more large-scale yet real-captured point clouds which
possess complex structures are involved. That is, a challenging
outdoor scene dataset named Paris-Lille 3D (NPM3D) is tested.
In addition, we provide more visual results to demonstrate the
merit of AGConv to capture key distinguishable features.

2) To validate the AGConv’s effectiveness for point cloud
completion, we improve ECG-Net [20] by replacing its original
graph convolution with AGConv. The improved version of ECG-
Net is called iECG-Net. iECG-Net employs the so-called coarse-
to-fine strategy, i.e., first recovering its global yet coarse shape
and then increasing its local details to output the missing point
cloud of input. The difference from the original graph convolution
is that, our AGConv can not only extract adequate spatial struc-
ture information, but also extract local features more efficiently
and precisely. Therefore, the final completion results can better
represent the missing parts on the tested benchmarks.

3) To validate the AGConv’s effectiveness for point cloud
denoising, we improve Pointfilter by replacing its original encoder
with AGConv. The improved version of Pointfilter is called iPoint-

filter. iPointfilter is an encoder-decoder network, which directly
takes the raw neighboring points of each noisy point as input,
and regresses a displacement vector to encourage this noisy point
back to its ground-truth position. The difference from the original
encoder is that, AGConv can better obtain a compact representa-
tion for each input patch. Experiments show that our iPointfilter
outperforms the state-of-the-art deep learning techniques in terms
of noise-robustness and sharp feature preservation.

4) To validate the AGConv’s effectiveness for point cloud
upsampling, we improve PU-Transformer by add the AGConv
module in the upsampling head. The improved version of PU-
Transformer is called iPU-Transformer. iPU-Transformer takes a
sparse point cloud as input, and generate a dense point cloud.
The difference from the original upsampling head is that, the
AGConv can better capture potential detailed features from the
sparse point cloud. Therefore, iPU-Transformer can achieve a
better upsampling effect in the parts with detail features.

5) To validate the AGConv’s effectiveness for point cloud cir-
cle extraction, we improve Circle-Net [21] by replacing its original
graph convolution module with AGConv. The improved version
of Circle-Net is called iCircle-Net. Most of existing approaches
leverage classification and fitting operations independently, not
synergizing with each other to accurately extract geometric prim-
itives. Differently, iCircle-Net is an end-to-end classification-and-
fitting network, in which the two operations of classifying circle-
boundary points and fitting the circle can synergize with each other
to improve the performance of circle extraction. The difference
from the original graph convolution is that, our AGConv can
better perceive the circle spatial structure information. Therefore,
iCircle-Net obtains better circle boundary detection precision.

6) To validate the AGConv’s effectiveness for point cloud
registration, we improve RGM [22] by utilizing AGConv in the
local feature extractor instead of the original graph convolution.
We denote the improved RGM with AGConv as iRGM. iRGM
first utilizes a local feature extractor to obtain point-wise features,
then both edge generator and graph feature extractor are leveraged
to excavate graph features between the source and target point
clouds. In addition, the AIS module predicts the soft correspon-
dence matrix and the LAP solver converts soft correspondences
to hard correspondences. Finally, the transformation is solved by
SVD. Compared with the original version, AGConv can extract
more discriminative and robust features for each point, thus
boosting the performance of registration.

Extensive experiments demonstrate the effectiveness of our
AGConv, achieving state-of-the-art performances in classification,
segmentation, denoising, completion, upsampling, circle extrac-
tion and registration tasks on many benchmark datasets.

2 RELATED WORK

Although achieving the tremendous success in 2D grid-like struc-
tures, deep learning is still not well explored for 3D point
cloud analysis. We will review previous researches categorized
as voxelization-, projection-, graph- and point-based methods.

Voxelization-based and multi-view methods. The voxeliza-
tion/projection strategy has been explored as a simple way in point
cloud analysis to build proper representations for adapting the
powerful CNNs in 2D vision. A number of works [23], [24], [25],
[26] project point clouds onto regular grids, but inevitably suffer
from both the information loss and enormous computational cost.
To alleviate these problems, OctNet [7] and Kd-Net [27] attempt

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

to exploit more efficient data structures and skip the computations
on empty voxels. Alternatively, the multiview-based methods [28],
[29] treat a point cloud as a set of 2D images projected from
multiple views, so as to directly leverage 2D CNNs for subsequent
processing. However, it is fundamentally difficult to apply these
methods to large-scale scanned data, considering the struggle of
covering the entire scene from single-point perspectives.

Point-based methods. In order to handle the irregularity of point
clouds, state-of-the-art deep networks are designed to directly
manipulate raw point cloud data, instead of introducing an inter-
mediate representation. In this way, PointNet [11] first proposes
to use MLPs independently on each point and subsequently
aggregate global features through a symmetric function. Thanks
to this design, PointNet is invariant to input point orders, but
fails to encode local geometric information, which is important
for the semantic segmentation related tasks. To solve this issue,
PointNet++ [30] proposes to apply PointNet layers locally in
a hierarchical architecture to capture the regional information.
Alternatively, Huang et al. [31] sorts unordered 3D points into
an ordered list and employs Recurrent Neural Networks (RNN)
to extract features according to different dimensions. In order
to process a set of points that are unordered and discrete, there
also exist efforts of sorting the 3D points into an ordered list.
[27], [32] propose to apply the Kd-tree structure to build a 1D
list for points according to their coordinates. Although alleviating
the unstructured problem, the sorting process is critical to the
weight functions, and local geometric information may not be
easily preserved in a specific ordered list.

More recently, various approaches have been proposed for
effective local feature learning. PointCNN [33] aligns points in
a certain order by predicting a transformation matrix for the local
point set, which inevitably leads to sensitivity in point orders
since the operation is not permutation-invariant. SpiderCNN [34]
defines its convolution kernel as a family of polynomial functions,
relying on the neighbors’ order. PCNN [35] designs point kernels
based on the spatial coordinates and further KPConv [36] presents
a scalable convolution using explicit kernel points. RS-CNN
[37] assigns channel-wise weights to neighboring point features
according to the geometric relations learned from 10-D vectors.
ShellNet [38] splits a local point set into several shell areas, from
which features are extracted and aggregated. Recently, Zhao et
al. [39] and Guo et al. [40] independently utilize the successful
transformer structures in natural language processing [41], [42] to
build dense self-attentions between the local and global features.

Graph-based methods. The graph-based methods treat points
as nodes of a graph, and establish edges according to their
spatial/feature relationships. Graph is a natural representation for
a point cloud to model local geometric structures. The notion of
Graph Convolutional Network is proposed by [43], which gener-
alizes convolution operations over graphs by averaging features
of adjacent nodes. Similar ideas [12], [33], [44], [45], [46] have
been explored to extract local geometric features from local points.
Shen et al. [44] define kernels according to Euclidean distances
and geometric affinities in the neighboring points. DGCNN [12]
gathers nearest neighboring points in the feature space, followed
by the EdgeConv operators for feature extraction, in order to
identify semantic cues dynamically. MoNet [47] defines convo-
lution as Gaussian mixture models in a local pseudo-coordinate
system. Inspired by the attention mechanism, several works [14],
[16], [48] propose to assign proper attentional weights to different

points/filters. 3D-GCN [13] develops deformable kernels, focusing
on shift and scale-invariant properties in point cloud analysis.
diffConv [49] operates on spatially-varying and density-dilated
neighborhoods, which are further adapted by a learned masked
attention mechanism.

In order to expand the receptive field of graph convolutions,
they either use graph pooling [13], [36] to gradually reduce the
point numbers or a dynamic graph mechanism [12], [50] to con-
nect similar points in the feature space. Both methods will change
the graph construction structure which is easier to propagate local
features throughout the point cloud. Therefore, the neighborhood
of each point is varying between layers, determined dynamically
according to the sampling strategy or feature similarity. That is,
the relationships (edge features) are largely diverse among points
not only in the neighborhood of a central point but also between
any pair of points in the point cloud. Previous methods try to use
a static function over each pair of points, neglecting their different
feature correspondence from the previous layers. Differently, we
propose to adaptively establish this varying relationship between
a pair of points according to their feature attributes. This adap-
tiveness represents the diversity of weight kernels applied on each
pair of points deriving from their individual features.

Convolution on point clouds. Many methods are proposed to
define a proper convolution on point clouds. To improve the basic
designs using fixed MLPs in PointNet/PointNet++, a variety of
works [14], [16], [36], [37], [48] try to introduce weights based
on the learned features, with more variants of convolution inputs
[12], [34], [47]. However, the limitation caused by the isotropy of
convolution still exists for those relying on fixed kernels.

Convolution on meshes. Polygonal meshes are a compelling
representation form of 3D geometry. MeshCNN [51] operates
directly on irregular triangular meshes, performing convolution
and pooling operations designed in the harmony with the unique
mesh properties. SubdivNet [52] performs 3D geometry learning
on meshes with loop subdivision sequence connectivity using a
mesh pyramid structure for feature aggregation. MeshNet [53] ap-
plies mesh convolution to expand the receptive field of the surface,
which is realized by accumulating the information of adjacent
surfaces. SpiralNet++ [54] formulates the order of aggregating
neighbouring vertices, and fuses neighbouring node features with
local geometric structure information. Nevertheless, the mesh
convolution is vulnerable to adversarial remeshing attacks, and
sometimes, the operation needs a trade-off between the mesh
quality and the base mesh size.

Other methods [55], [56], [57] try to learn a dynamic weight
for the convolution. However, their ideas are to approximate
weight functions from the direct 3D coordinates while AGConv
uses features to learn the kernels, which represents more adap-
tiveness. In addition, their implementations are heavily memory
consuming when convolving with the high-dimensional features.
Thus, the main focus of this work is to handle the isotropy of
point cloud convolutions, by developing an adaptive kernel that is
unique to each point in the convolution.

3 METHODOLOGY

We exploit local geometric characteristics in point clouds by
proposing a novel adaptive graph convolution (AGConv) in the
spirit of graph neural networks (Sec. 3.1). Afterwards, we discuss
several choices for the feature decisions in AGConv (Sec. 3.2).
The details of the constructed networks are shown in Sec. 3.3.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

𝑓𝑖

𝑥𝑖 , 𝑓𝑖

𝑥𝑗1, 𝑓𝑗1

𝑥𝑗2, 𝑓𝑗2
𝑥𝑗3, 𝑓𝑗3

𝑥𝑗4, 𝑓𝑗4
𝑥𝑗5, 𝑓𝑗5

𝑓𝑗
Δ𝑓𝑖𝑗 Ƹ𝑒𝑖𝑗𝑚

𝑔𝑚

𝑥𝑖

𝑥𝑗
Δ𝑥𝑖𝑗 ℎ𝑖𝑗𝑚Dot-Product

m = 1, 2, …, M

Concat
ℎ𝑖𝑗2

ℎ𝑖𝑗1

ℎ𝑖𝑗5

ℎ𝑖𝑗4

ℎ𝑖𝑗3

Pool 𝑓𝑖′

Fig. 2. The illustration of AGConv processed in the neighborhood of a target point xi. An adaptive kernel êijm is generated from the feature input
∆fij of a pair of points on the edge, which is then convolved with the corresponding spatial input ∆xij . Concatenating hijm of all dimensions
yields the edge feature hij . Finally, the output feature f ′i of the central point is obtained through a pooling function. AGConv differs from the other
graph convolutions in that the convolution kernel is unique for each pair of points.

N
,

6
4 AGConv

(64)

N
/4

,
1

2
8

N
/1

6
,
2

5
6

N
/6

4
,
1

0
2

4

1024

Shared-MLP(512,256)

n
 x

 p

…

AGConv

(256)

repeating

Pool

Segmentation

MLP

(1024)Graph

Pool

N
/6

4
,
5

1
2

Graph

Conv(512)
Graph

PoolN
,

6
4 AGConv

(128)
Graph

Pool

interpolating

N
,

3 AGConv

(64)

In
p

u
t

P
o

in
ts

N
,

6
4

N
,

1
2

8

N
,

2
5

6

N
,

1
0

2
4

Graph

Conv(128)

Graph

Conv(256)

MLP

(1024)
1024

c

MLP

(512,256)

Pool

Classification

Fig. 3. AGConv for classification and segmentation. GraphConv denotes our standard convolution without an adaptive kernel. The segmentation
model uses pooling and interpolating to build a hierarchical graph structure, while the classification model applies a dynamic structure [12].

3.1 Adaptive graph convolution

We denote the input point cloud as X = {xi|i = 1, 2, ..., N} ∈
RN×3 with the corresponding features defined as F = {fi|i =
1, 2, ..., N} ∈ RN×D . Here, xi processes the (x,y, z) coordi-
nates of the i-th point, and, in other cases, can be potentially
combined with a vector of additional attributes, such as normal and
color. We then compute a directed graph G(V, E) from the given
point cloud where V = {1, ..., N} is the set of points (nodes),
and E ⊆ V × V represents the set of edges. We construct the
graph by employing the k-nearest neighbors (KNN) of each point
including self-loop. Given the input D-dimensional features, our
AGConv layer is designed to produce a new set of M -dimensional
features with the same number of points while attempting to more
accurately reflect local geometric characteristics than previous
graph convolutions.

Denote that xi is the central point in the graph convolution,
and N (i) = {j|(i, j) ∈ E} is a set of point indices in its neigh-
borhood. Due to the irregularity of point clouds, previous methods
usually apply a fixed kernel function on all neighbors of xi to
capture the geometric information of the patch. However, different
neighbors may reflect different feature correspondences with xi,
particularly when xi is located at salient regions, such as corners
or edges. In this regard, the fixed kernel may incapacitate the
geometric representations generated from the graph convolution
for classification and, particularly, segmentation.

In contrast, we endeavor to design an adaptive kernel to
capture the distinctive relationships between each pair of points.
To achieve this, for each channel in the output M -dimensional
feature, our AGConv dynamically generates a kernel using a

function over the point features (fi, fj):

êijm = gm(∆fij), j ∈ N (i). (1)

Here, m = 1, 2, ...,M indicates one of the M output dimensions
corresponding to a single filter defined in our AGConv. In order
to combine the global shape structure and feature differences cap-
tured in a local neighborhood [12], we define ∆fij = [fi, fj−fi]
as the input feature for the adaptive kernel, where [·, ·] is the
concatenation operation. g(·) is a feature mapping function, and
here we use a multilayer perceptron.

Like the computations in 2D convolutions, which obtain one of
theM output dimensions by convolving theD input channels with
the corresponding filter weights, our adaptive kernel is convolved
with the corresponding points (xi, xj):

hijm = σ 〈êijm,∆xij〉 , (2)

where ∆xij is defined as [xi, xj − xi] similarly, 〈·, ·〉 represents
the inner product of two vectors outputting hijm ∈ R and σ is
a nonlinear activation function. As shown in Fig. 2 (middle), the
m-th adaptive kernel êijm is combined with the spatial relations
∆xij of the corresponding point xj ∈ R3, which means the size
of the kernel should be matched in the dot product, i.e., the afore-
mentioned feature mapping is gm : R2D → R6. In this way, the
spatial positions in the input space are efficiently incorporated into
each layer, combined with the feature correspondences extracted
dynamically from our kernel. Stacking hijm of each channel
yields the edge feature hij = [hij1, hij2, ..., hijM] ∈ RM

between the connected points (xi, xj). Finally, we define the

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

output feature of the central point xi by applying aggregation over
all the edge features in the neighborhood (see Fig. 2 (right)):

f ′i = max
j∈N (i)

hij , (3)

where max is a channel-wise max-pooling function. Over-
all, the convolution weights of AGConv are defined as Θ =
(g1, g2, ..., gM).

3.2 Feature decisions

In our method, AGConv generates an adaptive kernel for each
pair of points according to their individual features (fi, fj). Then,
the kernel êijm is applied to the point pair of (xi, xj) in order
to describe their spatial relations in the input space. The feature
decision of ∆xij in the convolution of Eq. 2 is an important
design. In other cases, the inputs can be xi ∈ RE including
additional dimensions representing other valuable point attributes,
such as point normals and colors. By modifying the adaptive
kernel to gm : R2D → R2E , our AGConv can also capture the
relationships between feature dimensions and spatial coordinates
which are from different domains. Note that, this is another option
in our AGConv design, and we use the spatial positions as input
xi by default in the convolution in our experiments.

As an optional choice, we replace ∆xij with ∆fij in Eq. 2
with a modified dimension of êijm. Therefore, the adaptive kernel
of a pair of points is designed to establish the relations of their
current features (fi, fj) in each layer. This is a more direct
solution, similar to other convolution operators, that produces a
new set of learned features from features in the preceding layer
of the network. However, we recommend xyz rather than feature
in that: (i) the point feature fj has been already included in the
adaptive kernel and convolving again with fj leads to redundancy
of feature information; (ii) it is easier to learn spatial relations
through MLPs, instead of detecting feature correspondences in a
high-dimensional space (e.g., 64, 128 dimensional features); and
(iii) the last reason is the memory cost and more specifically the
large computational graph in the training stage which cannot be
avoided. We evaluate all these choices in Sec. 4.5.

3.3 Network architectures for classification and seg-
mentation

We design individual network architectures for the point cloud
classification and segmentation tasks using the proposed AGConv
layer. The network architectures are shown in Fig. 3. The standard
graph convolution layer with a fixed kernel uses the same feature
inputs ∆fij as in the adaptive kernels.

Dynamic graph update. Following [12], we update the graph
structure in each layer according to the feature similarity among
points, rather than fixed using spatial positions. That is, in each
layer, the edge set E(l) is recomputed where the neighborhood of
point xi is N (i) = {ji1 , ji2 , ..., jik} such that the corresponding
features fji1 , fji2 , ..., fjik are closest to fi. This encourages the
network to organize the graph semantically, grouping together
similar points in the feature space but not solely considering their
proximity in the spatial inputs. Thus, the receptive field of local
points is expanded, leading to a propagation of local information
throughout the point cloud. Note that, in the convolution with
adaptive kernel in Eq. 2, ∆xij corresponds to the feature pair
(fi, fj) which may not be spatially close.

2D (c x M)

c

MLP(d)
1x1

Conv
d cM

Matrix

Multiplication

(optional) 1x1 Conv, BN

Δ𝑓𝑖𝑗 ℎ𝑖𝑗

LeakyReLU

1x1 Conv BN LeakyReLU

MLP

M

Δ𝑥𝑖𝑗

Fig. 4. Kernel function in our adaptive convolution. We apply a two-layer
MLP for the adaptive weight matrix. The output edge feature is obtained
by matrix multiplication between ∆xij and the weight matrix. Optional
ResNet block: shortcut 1 × 1 convolution and batch normalization layer.

Kernel function for adaptive convolution. In our experiments,
the AGConv kernel function gm is implemented as a two-layer
shared MLP with residual connections to extract important geo-
metric information. It is an inevitable choice to use a shared map-
ping as the kernel function. However, gm is not the convolution
kernel (fixed kernel) that is applied to points, but is to explore the
different feature correspondences for different pairs of points. In
the implementation, we process all gm (m = 1, 2, ...,M) together
and obtain the adaptive kernels for the following convolution
(see Fig. 4). The first layer is one shared MLP(d) for all gm,
and we organize the kernels as a weight matrix (c ×M) which
is then applied to the corresponding ∆xij of dimension c by
matrix multiplication. After a LeakyReLU, the edge feature hij
is obtained and finally we apply Eq. 3 for the output feature of the
central point. The ResNet connection is an optional block used
in our segmentation model. From this perspective, the generation
of adaptive kernels can be regarded as the generation of a weight
matrix which directly produces the M -dimensional feature.

Graph pooling. For the segmentation task, we reduce the num-
ber of points progressively in order to build the network in a
hierarchical architecture. The point cloud is subsampled by the
furthest point sampling algorithm [11] with a sampling rate of 4,
and is applied by a pooling layer to output aggregated features
on the coarsened graph. In each graph pooling layer, a new graph
is constructed corresponding to the sampled points. The feature
pooled at each point in the sub-cloud can be simply obtained
by a max-pooling function within its neighborhood. Alternatively,
we can use an AGConv layer to aggregate this pooled features.
To predict point-wise labels for the segmentation purpose, we
interpolate deeper features from the subsampled cloud to the
original points. Here, we use the nearest upsampling scheme to
get the features for each layer, which are concatenated for the
final point-wise features.

Segmentation network. Our segmentation network architecture
is illustrated in Fig. 3. The AGConv encoder includes 5 layers of
convolutions in which the last one is a standard graph convolution
layer, as well as several graph pooling layers. The subsampled
features are interpolated and concatenated for the final point
features which are fed to the decoder part. In addition, our
segmentation network includes a spatial transformer network [58]
before the convolution layers. It processes the input points and
outputs a 3×3 matrix in order to apply a global transformation. We
apply standard graph convolutions (64, 128, 1024), followed by a
max pooling function and fully-connected layers (512, 256). The
output matrix is initialized as an identity matrix. Here, it is also

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

Method mcIoU(%) mIoU(%)

w/o STN 83.2 86.2
STN 83.4 86.4

TABLE 1
Segmentation results for models using STN.

Method Input #points mAcc(%) OA(%)

3DShapeNetParts [24] voxel - 77.3 84.7
VoxNet [23] voxel - 83.0 85.9

Subvolume [59] voxel - 86.0 89.2

PointNet [11] xyz 1k 86.0 89.2
PointNet++ [30] xyz, normal 5k - 91.9

Kd-Net [27] xyz 1k - 90.6
SpecGCN [60] xyz 1k - 92.1

SpiderCNN [34] xyz, normal 5k - 92.4
PointCNN [33] xyz 1k 88.1 92.2

SO-Net [61] xyz, normal 5k - 93.4
DGCNN [12] xyz 1k 90.2 92.9
KPConv [36] xyz 6.8k - 92.9
3D-GCN [13] xyz 1k - 92.1

PointASNL [62] xyz, normal 1k - 93.2

Ours xyz 1k 90.7 93.4

TABLE 2
Classification results on ModelNet40. Our network achieves the best

results according to both mAcc and OA.

possible to replace these graph convolutions with AGConv layers,
but this does not lead to a significant improvement. Since the input
contains normals as additional attributes, we apply the 3×3 matrix
separately to the point and normal dimensions. The STN module
can be seen as a global adaptive kernel that is convolved with all
input points similar as in our AGConv. We report the results of
networks with and without STN in Tab. 1.

Classification network. The classification network uses a similar
encoder as in the segmentation model (see Fig. 3). For sparser
point clouds used in ModelNet40, we simply apply dynamic graph
structures [12] without pooling and interpolation. Specifically, the
graph structure is updated in each layer according to the feature
similarity among points, rather than fixed using spatial positions.
That is, in each layer, the edge set El is recomputed where the
neighborhood of point xi is N (i) = {j1, j2, ..., jk} such that
the corresponding features fj1 , fj2 , ..., fjk are closest to fi. This
encourages the network to organize the graph semantically and
expands the receptive field of local neighborhood by grouping
together similar points in the feature space.

4 EVALUATION

In this section, we evaluate our AGConv for point cloud classifi-
cation, part segmentation and indoor/outdoor segmentation.

4.1 Classifcation

Data. We evaluate our model on ModelNet40 [24] for classifica-
tion. It contains 12,311 meshed CAD models from 40 categories,
where 9,843 models are used for training and 2,468 models for
testing. We follow the experimental setting of [11]. 1024 points are
uniformly sampled for each object and we only use the (x,y, z)
coordinates of sampled points as input. Data augmentation in-
cludes shifting, scaling and perturbing of the points.

Network configuration. The network architecture is shown in
Fig. 3. Following [12], we recompute the graph based on the fea-
ture similarity in each layer. The number k of neighborhood size
is set to 20 for all layers. Shortcut connections are included and
one shared fully-connected layer (1024) is applied to aggregate
the multi-scale features. The global feature is obtained using a
max-pooling function. All layers are with LeakyReLU and batch
normalization. We use the SGD optimizer with the momentum
set to 0.9. The initial learning rate is 0.1 and is dropped until
0.001 using cosine annealing [63]. The batch size is set to 32 for
all training models. We use PyTorch [64] for implementation and
train the network on a RTX 2080 Ti GPU. The hyperparameters
are chosen in a similar way for other tasks.

Results. We show the results for classification in Tab. 2. The
evaluation metrices on this dataset are the mean class accuracy
(mAcc) and the overall accuracy (OA). Our model achieves the
best scores on this dataset. For a clear comparison, we show
the input data types and the number of points corresponding to
each method. Our AGConv only considers the point coordinates
as input with a relatively small size of 1k points, which already
outperforms other methods using larger inputs.

4.2 Part segmentation

Data. We further test our model for the part segmentation task on
the ShapeNetPart dataset [65]. This dataset contains 16,881 shapes
from 16 categories, with 14,006 for training and 2,874 for testing.
Each point is annotated with one label from 50 parts and each
point cloud contains 2-6 parts. We follow the experimental setting
of [30] and use their provided data for the benchmarking purpose.
2,048 points are sampled from each shape. The input attributes
include the point normals apart from the 3D coordinates.

Network configuration. Following [11], we include a one-hot
vector representing category types for each point. It is stacked
with the point-wise features to compute the segmentation results.
Other training parameters are set the same as in our classification
task. We use spatial positions (without normals) as ∆xij as in
Sec. 3.2. Other choices will be evaluated later in Sec. 4.5.

Results. We report the mean class IoU (mcIoU) and mean instance
IoU (mIoU) in Tab. 3. Following [11], IoU of a shape is computed
by averaging IoU of each part. The mean IoU (mIoU) is computed
by averaging the IoUs of all testing instances. The class IoU
(mcIoU) is the mean IoU over all shape categories. We also show
the class-wise segmentation results. Our model achieves the state-
of-the-art performance compared with other methods.

4.3 Indoor scene segmentation

Data. Our third experiment shows the semantic segmentation
performance of our model on the S3DIS dataset [75]. This dataset
contains 3D RGB point clouds from six indoor areas of three
different buildings, covering a total of 271 rooms. Each point
is annotated with one semantic label from 13 categories. For a
common evaluation protocol [11], [66], [76], we choose Area 5 as
the test set which is not in the same building as other areas.

Real scene segmentation. The large-scale indoor datasets reveal
more challenges, covering larger scenes in a real-world environ-
ment with noise and outliers. Thus, we follow the experimental
settings of KPConv [36], and train the network using randomly

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

Method mcIoU mIoU air bag cap car chair ear guitar knife lamp laptop motor mug pistol rocket skate table
plane phone bike board

Kd-Net [27] 77.4 82.3 80.1 74.6 74.3 70.3 88.6 73.5 90.2 87.2 81.0 94.9 87.4 86.7 78.1 51.8 69.9 80.3
PointNet [11] 80.4 83.7 83.4 78.7 82.5 74.9 89.6 73.0 91.5 85.9 80.8 95.3 65.2 93.0 81.2 57.9 72.8 80.6

PointNet++ [30] 81.9 85.1 82.4 79.0 87.7 77.3 90.8 71.8 91.0 85.9 83.7 95.3 71.6 94.1 81.3 58.7 76.4 82.6
SO-Net [61] 81.0 84.9 82.8 77.8 88.0 77.3 90.6 73.5 90.7 83.9 82.8 94.8 69.1 94.2 80.9 53.1 72.9 83.0
DGCNN [12] 82.3 85.2 84.0 83.4 86.7 77.8 90.6 74.7 91.2 87.5 82.8 95.7 66.3 94.9 81.1 63.5 74.5 82.6

PointCNN [33] - 86.1 84.1 86.4 86.0 80.8 90.6 79.7 92.3 88.4 85.3 96.1 77.2 95.3 84.2 64.2 80.0 83.0
PointASNL [62] - 86.1 84.1 84.7 87.9 79.7 92.2 73.7 91.0 87.2 84.2 95.8 74.4 95.2 81.0 63.0 76.3 83.2

3D-GCN [13] 82.1 85.1 83.1 84.0 86.6 77.5 90.3 74.1 90.9 86.4 83.8 95.6 66.8 94.8 81.3 59.6 75.7 82.8
KPConv [36] 85.1 86.4 84.6 86.3 87.2 81.1 91.1 77.8 92.6 88.4 82.7 96.2 78.1 95.8 85.4 69.0 82.0 83.6

Ours 83.4 86.4 84.8 81.2 85.7 79.7 91.2 80.9 91.9 88.6 84.8 96.2 70.7 94.9 82.3 61.0 75.9 84.2

TABLE 3
Part segmentation results on ShapeNetPart evaluated by the mean class IoU (mcIoU) and mean instance IoU (mIoU).

Ablations mcIoU(%) mIoU(%)

GraphConv 81.9 85.5
Attention Point 78.0 83.3

Attention Channel 77.9 83.0

Feature 82.2 85.9
Normal 83.2 86.2

Initial attributes 83.2 86.1
Ours 83.4 86.4

TABLE 4
Ablation studies on ShapeNetPart for part segmentation.

Method mAcc(%) OA(%)

GraphConv 88.8 92.5
Attention Point 88.5 92.1

Attention Channel 89.2 92.2
Ours 90.7 93.4

TABLE 5
Results of ablation networks on ModelNet40.

sampled clouds in spheres. The subclouds contain more points
with varying sizes, and are stacked into batches for training.
During testing, spheres are uniformly picked in the scenes, and
each point is tested several times using a voting scheme. The input
point attributes include the RGB colors and the original heights.

Results. We report the mean classwise intersection over union
(mIoU), mean classwise accuracy (mAcc) and overall accuracy
(OA) in Tab. 6. The IoU of each class is also provided. The
proposed AGConv outperforms the state-of-the-arts in most of
the categories, which further demonstrates the effectiveness of
adaptive convolutions over fixed kernels. The qualitative results
are visualized in Fig. 5 where we show rooms from different
areas of the building. Our method can correctly detect less obvious
edges of, e.g., pictures and boards on the wall.

4.4 Outdoor scene segmentation

Data. Paris-Lille 3D (NPM3D) is a large-scale urban point cloud
dataset acquired by a Mobile Laser System (MLS). It contains 160
million points in total scanned from four different cities. To help
the segmentation and classification tasks, the point cloud has been
annotated to 10 coarse classes. To ensure a fair comparison, test
labels are hidden and they provide only an online benchmark.

(a) Input (b) Prediction (c) Ground Truth

Fig. 5. Visualization of semantic segmentation results on S3DIS. We
show the input point cloud, and labelled points mapped to RGB colors.

(a) Input (b) Prediction

Fig. 6. Visualization of semantic segmentation results on NPM3D. We
show the input point cloud, and labelled points mapped to RGB colors.

Challenge. Compared with the indoor scenes, outdoor objects
are often larger in scale, more complex in structure and contain
much more noise. Moreover, the captured point clouds of outdoor
scenes are sparse and have a large amount of object classes.
However, single objects, especially the small targets, are usually

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

Method OA mAcc mIoU ceiling floor wall beam column window door table chair sofa bookcase board clutter

PointNet [11] – 49.0 41.1 88.8 97.3 69.8 0.1 3.9 46.3 10.8 59.0 52.6 5.9 40.3 26.4 33.2
SegCloud [66] – 57.4 48.9 90.1 96.1 69.9 0.0 18.4 38.4 23.1 70.4 75.9 40.9 58.4 13.0 41.6
PointCNN [33] 85.9 63.9 57.3 92.3 98.2 79.4 0.0 17.6 22.8 62.1 74.4 80.6 31.7 66.7 62.1 56.7

PCCN [67] – 67.0 58.3 92.3 96.2 75.9 0.3 6.0 69.5 63.5 66.9 65.6 47.3 68.9 59.1 46.2
PointWeb [68] 87.0 66.6 60.3 92.0 98.5 79.4 0.0 21.1 59.7 34.8 76.3 88.3 46.9 69.3 64.9 52.5
HPEIN [69] 87.2 68.3 61.9 91.5 98.2 81.4 0.0 23.3 65.3 40.0 75.5 87.7 58.5 67.8 65.6 49.4
GAC [14] 87.7 - 62.8 92.2 98.2 81.9 0.0 20.3 59.0 40.8 78.5 85.8 61.7 70.7 74.6 52.8

KPConv [36] – 72.8 67.1 92.8 97.3 82.4 0.0 23.9 58.0 69.0 81.5 91.0 75.4 75.3 66.7 58.9
PointASNL [62] 87.7 68.5 62.6 94.3 98.4 79.1 0.0 26.7 55.2 66.2 83.3 86.8 47.6 68.3 56.4 52.1

Ours 90.0 73.2 67.9 93.9 98.4 82.2 0.0 23.9 59.1 71.3 91.5 81.2 75.5 74.9 72.1 58.6

TABLE 6
Semantic segmentation results on S3DIS evaluated on Area 5. We report the mean classwise IoU (mIoU), mean classwise accuracy (mAcc) and

overall accuracy (OA). IoU of each class is also provided.

Method mIoU ground building pole bollard trash can barrier pedestrian car natural

RF MSSF [70] 61.5 99.1 90.5 66.4 62.6 5.8 52.1 5.7 86.2 84.7
HDGCN [71] 68.3 99.4 93.0 67.7 75.7 25.7 44.7 37.1 81.9 89.6

MS3 DVS [72] 66.9 99.0 94.8 52.4 38.1 36.0 49.3 52.6 91.3 88.6
KP-edgeret [73] 69.9 99.2 92.9 60.0 65.7 49.0 38.6 48.6 85.4 89.7
ConvPoint [74] 75.9 99.5 95.1 71.6 88.7 46.7 52.9 53.5 89.4 85.4
KPConv [36] 75.9 - - - - - - - - -

Ours 76.9 99.4 97.3 67.8 77.1 49.4 59.4 55.5 93.2 93.2

TABLE 7
Semantic segmentation results on NPM3D. We report the mean classwise IoU (mIoU) and IoU of each class.

sampled with very few points. These challenges cannot make
the downstream applications (e.g., segmentation, detection and
recognition) operate smoothly. To alleviate the aforementioned
problems, a deep network that possesses a powerful ability of
extracting features is more than welcome. Following the exper-
imental setup in Sec. 4.3, we have implemented AGConv by
adopting the architecture of KPConv to realize the segmentation,
and the specific details will not be described here.

Results. To demonstrate the effectiveness of AGConv, we compare
our method with KPConv [36], ConvPoint [74], MS3 DVN [72],
HDGCN [71], and RF-MSSF [70]. The final mIoU results and the
IoU of each class are reported in Tab. 7. All quantitative results
come from the official website of the dataset or the corresponding
papers. After performing AGConv on KPConv, mIoU of the scene
segmentation has been improved, which is superior to the com-
petitors. This indicates that our adaptive convolution can identify
effective information of each feature map, and capture different
relations between points from different semantic components. We
show visualized segmentation results in Fig. 6 where our method
correctly identifies outdoor sparse point cloud scenes.

4.5 Ablation studies

In this section, we explain some of the architecture choices used
in our network, and demonstrate the effectiveness of AGConv
compared to several ablation networks.

Adaptive convolution vs Fixed kernels. We compare our AG-
Conv with fixed kernel convolutions, including methods using the
attention mechanism and standard graph convolution (DGCNN
[14]), as discussed in the introduction. We train these models
on ShapeNetPart for segmentation, and design several ablation
networks by replacing AGConv layers with fixed kernel layers
and keeping other architectures the same.

Specifically, [16] assigns attentional weights to different neigh-
boring points and [14] further designs a channel-wise attentional
function. We use their layers and denote these two ablations as
Attention Point and Attention Channel in Tab. 4 respectively. We
only replace the AGConv layers in our network and the feature
inputs ∆fij are the same as our model. Besides, we also show
the result by using standard graph convolutions (GraphConv),
which can be seen as a similar version of DGCNN [12]. From
the comparison, we see that our method achieves better results
than the fixed kernel graph convolutions.

Feature decisions. In AGConv, the adaptive kernel is generated
from the feature input ∆fij , and subsequently convolved with
the corresponding ∆xij . Note that, in our experiments, ∆xij
corresponds to the (x,y, z) spatial coordinates of the points. We
have discussed several other choices of ∆xij in Eq. 2 in Sec. 3.2,
which can be evaluated by designing these ablations:
• Feature - In Eq. 2, we convolve the adaptive kernel êijm

with their current point features. That is, ∆xij is replaced with
∆fij and the kernel function is gm : R2D → R2D . This makes
the kernel learn to adapt to the features from previous layer and
extracts the feature relations.
• Initial attributes - The point normals (nx, ny, nz) are in-

cluded in the part segmentation task on ShapeNetPart, leading to
a 6-dimensional initial feature attributes for each point. Thus, we
design three ablations where we use only spatial inputs (Ours),
only normal inputs (Normal) and both of them (Initial attributes).
The kernel function is modified correspondingly.

The resulting IoU scores are shown in Tab. 4. As one can see,
(x,y, z) is the most critical initial attribute (probably the only
attribute) in point clouds, thus it is recommended to use them
in the convolution with adaptive kernels. Althrough achieving a
promising result, the computational cost for the Feature ablation
is extremely high since the network expands heavily when it is

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

0
10
20
30
40
50
60
70
80
90

100

1024 768 512 384 256 128

O
ve

ra
ll

A
cc

ur
ac

y
(%

)

Number of points

GraphConv
Attention
Ours

0
10
20
30
40
50
60
70
80
90

100

0 0.02 0.04 0.06 0.08 0.1

O
ve

ra
ll

A
cc

ur
ac

y
(%

)

Noise level

GraphConv
Attention
Ours

Fig. 7. Robustness test on ModelNet40 for classification. GraphConv
indicates the standard graph convolution network. Attention indicates
the ablation where we replace the AGConv layers with graph attention
layers (point-wise). From the comparison, we can see that our model is
more robust to point density and noise perturbation.

Number k mAcc(%) OA(%)

5 89.4 92.8
10 90.7 93.2
20 90.7 93.4
40 90.4 93.0

TABLE 8
Our classification network with different k of nearest neighbors.

convolved with a high-dimensional feature.

Attentional convolution. To compare our model with attentional
graph convolutions, we design several ablations which replace
AGConv layers with attentional convolution layers. Following the
design of [16], the output feature is formulated as:

f ′i = max
j∈N (i)

aij ∗ h(fj), (4)

where h : RD → RM is a shared MLP and aij is the attentional
weight calculated as:

aij = softmaxj(α(∆fij)). (5)

Here, α(·) is a mapping function, and ∆fij = [h(fi), h(fj) −
h(fi)] since the attentional weights are applied to h(fj) instead of
fj . A softmax is used to make

∑
j aij = 1, j ∈ N (i). In Sec. 4.3

of the main paper, the point-wise attentional weight (Attention
Point) uses aij ∈ R, i.e., the function is α : R2M → R. The
channel-wise attenional weight (Attention Channel) uses aij ∈
RM and, in this case, ∗ denotes the element-wise product.

The attentional weights aij are based on the produced features
h(fj) in order to determine the different contributions of the
neighboring points. However, since the applied convolution kernel
h(·) is still a fixed/isotripic one as we discussed in the main
paper, they still cannot solve the intrisic limitation of current graph
convolutions. The results of these ablation networks trained on the
ShapeNetPart dataset are given in Sec. 4.3. Furthermore, we show
more comparisons on ModelNet40 for classification in Tab. 5.

4.6 Robustness test
We further evaluate the robustness of our model to point cloud
density and noise perturbation on ModelNet40 [24]. We compare
our AGConv with several other graph convolutions as discussed
in Sec. 4.5. All the networks are trained with 1k points and
neighborhood size is set to k = 20. In order to test the influence
of point cloud density, a series of numbers of points are randomly
dropped out during testing. For noise test, we introduce additional

(a) DGCNN (b) Attention (c) Ours (d) GT

Fig. 8. Segmentation results on ShapeNet. The labelled points are vi-
sualized in different colors. We compare our adaptive graph convolution
with DGCNN [12] (standard graph convolution) and attentional convo-
lution network (Attention Point). Our method produces better results
especially for points close to the object boundaries and edges.

Method #parameters OA(%)

PointNet [11] 3.5M 89.2
PointNet++ [30] 1.48M 91.9

DGCNN [12] 1.81M 92.9
KPConv [36] 14.3M 92.9

Ours 1.85M 93.4

TABLE 9
The number of parameters and overall accuracy of different models.

Gaussian noise with standard deviations according to the point
cloud radius. From Fig. 7, we can see that our method is robust to
missing data and noise, thanks to the adaptive kernel in which the
structural connections is extracted dynamically in a sparser area.

Also, we experiment the influence of different numbers k of
the nearest neighboring points in Tab. 8. We choose several typical
sizes for testing. Reducing the number of neighboring points leads
to less computational cost while the performance will degenerate
due to the limitation of receptive field. Our network still achieves
a promising result when k is reduced to 5. On the other hand, with
certain point density, a larger k does not improve the performance
since the local information dilutes within a larger neighborhood.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

(a) Spatial (b) Layer1 (c) Layer2 (d) Layer3 (e) Layer4 (f) Ours (g) GT

Fig. 9. Visualize the Euclidean distances between two points (blue and green stars) and other points in the feature space (red: near, yellow: far).

Method #parameters Time(ms) OA(%)

Baseline (w/o AGConv) 1.81M 93.1 92.5
AGConv (Layer2) 1.85M 129.1 93.4
AGConv (Layer3) 1.95M 168.4 93.0
AGConv (Layer4) 2.35M 276.0 93.2

TABLE 10
Number of parameters, forward pass time (per batch) and overall

accuracy for different models using AGConv.

(a) Spatial (b) Layer1 (c) Layer2 (d) Layer4 (e) Ours (f) GT

Fig. 10. Visualize the Euclidean distances between the target point
(green point in (a)) and other points in the feature space. Red color
denotes a closer point and yellow one is far from the target. The feature
distances in several layers of the network provide a clear insight that
our network is able to distinguish points belonging to different semantic
parts. It also captures non-local similar structures (see the handles in
the second row).

4.7 Efficiency
To compare the complexity of our model with the state-of-the-arts,
we show the parameter numbers and the corresponding results
of networks in Tab. 9. These models are based on ModelNet40
for classification. Our model achieves the best performance of
93.4% overall accuracy and the model size is relatively small.
Compared with DGCNN [12] which can be seen as a standard
graph convolution version in our ablation studies, the proposed
adaptive kernel performs better while being efficient.

4.8 Model complexity
The standard graph convolution adopted in this work contains
2DM parameters (2D denotes the dimension of feature input
∆fij). Here, D and M denote the input and output dimensions
respectively. As described in Sec. 3.3, the kernel function uses a
two-layer MLP which contains dD+ dcM parameters where c is
the dimension of ∆xij (c = 3× 2 for point coordinates (x,y, z)

input). d is the dimension of hidden layer of the kernel function
(see Fig. 2) and it can be adjusted to reduce the model size.
In practice, we design the network architecture with two layers
of AGConv which already achieves a pleasing performance. We
further report the results and parameter numbers on ModelNet40
using different numbers of AGConv layers in Tab. 10. The adopted
design (Layer2) significantly improves the network performance
while the model size is relatively small. For the time performance
evaluation, we also report the forward pass times of different
models. The proposed AGConv layer is able to improve the
performance of existing graph CNNs while being efficient.

5 VISUALIZATION AND LEARNED FEATURES

In this section, we provide visual results to further demonstrate the
effectiveness of the proposed AGConv over fixed kernel methods.
We first visualize the segmentation results on ShapeNetPart in
Fig. 8. In this experiment, we compare the results of DGCNN
[12], attentional graph convolution (Attention Point described
in Sec. 4.5) and AGConv. Our results are better in challenging
regions, such as part boundaries and object edges. This verifies that
our method is able to capture distinguishable features for points
belonging to different parts. More visualizations on ShapeNetPart
are given in Fig. 21.

To achieve a deeper understanding of AGConv, we explore
the feature relations in several intermediate layers of the network
to see how AGConv can distinguish points with similar spatial
inputs. In this experiment, we train our model on ShapeNetPart
for segmentation. In Fig. 9, two target points (blue and green
stars in 1-st and 2-nd rows respectively) are selected which belong
to different parts of the object. We then compute the Euclidean
distances to other points in the feature space, and visualize them
by coloring the points with similar learned features in red. We can
see that, while being spatially close, our network can capture their
different geometric characteristics and segment them properly.
Also, from the 2-nd row of Fig. 9, points belonging to the same
semantic part (the wings) share similar features while they may
not be spatially close. This shows that our model can extract
valuable information in a non-local manner. As shown in Fig. 10,
when the point is close to edges between different semantic parts,
our network encourages it to have distinguishable features which
captures better geometric information. Thus, it is separated from
other parts of the objects, as shown in the first row of Fig. 10.
Also, we see that in the second row of Fig. 10, points belonging
to the same semantic part share similar features while they may
not be spatially close. Note that, Fig. 10(a) indicates the spatial
distances with regard to the central point.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

ConcatAGConvConcatMLP

Linear
PN

MLP

......

Concat

......

Tile

......

PM_C

Concat

......
......

AddGlobal Feature

Concat

MLP

PM_D

PM_CLocal Feature

PGT

Loss1 Loss2

Fig. 11. ECG-Net [20] is improved by our AGConv for point cloud
completion (call iECG-Net). iECG-Net can better extract local features
to recover the shape details by AGConv. iECG-Net 1) first generates the
coarse result PM C , and 2) concatenates PM C with the input PN to
produce PN + PM C , and 3) produces the final yet fine result PM D .

6 MORE POINT CLOUD ANALYSIS APPLICATIONS

AGConv, as a plug-and-play module, can flexibly serve more
point cloud analysis approaches to boost their performance. We
develop AGConv-based completion, denoising, upsampling, circle
extraction and registration networks in this section. For each
task, we introduce the network framework, data preparation and
comparison in a concise way. More details will be found in our
prepared webpage.

6.1 Point cloud completion
Raw point clouds captured by 3D sensors are often incomplete.
When employing these untreated point clouds for semantic un-
derstanding, users may receive inaccurate or even wrong results.
Point cloud completion aims to infer the whole underlying surface
from a partial input. Moreover, the completion results should be
uniform, dense and possess logically correct geometric structures.

Network framework. We leverage ECG-Net [20] as our net-
work’s backbone in Fig. 11. In our improved ECG-Net (iECG-
Net), the original graph convolution module is replaced by the
AGConv module. iECG-Net employs the so-called coarse-to-fine
strategy, i.e., first recovering its global yet coarse shape and then
increasing its local details to output the missing point cloud of
input. First, we take the incomplete point cloud PN as input,
and use an encoder-decoder structure like PCN [77] to yield the
coarse point cloud PM C to represent the missing part. Then,
we concatenate the input incomplete point cloud PN and the
coarse missing part PM C . Finally, we take the concatenation
result (PN + PM C) to the following detail refinement network
that contains the AGConv layer. AGConv can not only extract
adequate spatial structure information from (PN + PM C), but
also extract local features more efficiently and precisely. The final
completion result is PM D that represents the missing part. Thus,
the whole complete point cloud is (PN +PM D). Please note that,
in training, we calculate two losses from PM C and PM D with
the ground truth PGT by the Chamfer distance.

Data. We train and evaluate our iECG-Net in the benchmark
dataset Shapenet-Part, which has 13 categories of different ob-
jects. Shapenet-Part has 14473 shape elements formatted by point
clouds, in which 11705 point clouds are for training and 2768
for testing. In Shapenet-Part, the centers of all point clouds locate
at the origin, and their coordinate values of xyz range within [-
1,1]. We sample 2048 points uniformly from each point cloud
as the complete shape. Then, we select some border points like
(1,1,1) or (-1,1,1) as viewpoints and randomly choose a viewpoint

Shared
Parameters

PCA
Alignment

×
𝑹𝑹3×3

+𝑅𝑅−1

1024 512 256 3

N1024

MLP
(64,256,1024)

AGConv
(16, 32)

Shared
Parameters

In
pu

t P
at

ch N

3

N

3

3

�𝒑𝒑𝑖𝑖 = 𝒑𝒑𝑖𝑖 + 𝒏𝒏𝑖𝑖

𝒑𝒑𝑖𝑖�𝒑𝒑𝑖𝑖

Fig. 12. Pointfilter [83] is improved by our AGConv for point cloud
denoising (call iPointfilter). The main idea of iPointfilter is to project each
noisy point onto the clean surface according to its neighboring structure.
Given a noisy patch with N points, PCA is utilized for alignment and
then the aligned patch is fed into iPointfilter. Both AGConv and MLP are
used to extract features, and then all the features are aggregated by
max pooling. Finally, three fully connected layers are used to regress a
displacement vector between the noisy point cloud and the ground truth.
The outputs of the first two layers are processed by Batch Normalization
and Relu, and the last layer only uses the tanh activation function to
constrain the displacement vector.

for the point clouds in a same training batch, and remove a certain
amount of points that are closest to the viewpoint. By such removal
operation, we can produce the incomplete point clouds for training
and testing. In our experiments, we aim at the problem of large-
ratio incomplete point cloud completion. Thus, we set the ratio to
be to 50% for both training and testing.

Comparison. To demonstrate the effectiveness of AGConv, we
compare iECG-Net against several representative completion
methods, including L-GAN [78], PCN [77], 3D-Capsual [79],
TopNet [80], MSN [81], PF-Net [82], and ECG-Net [20]. In
our experiments, we train all the methods without the category
information for fairness. We test all methods in 13 categories
in Tab. 12. Benefiting from AGConv, iECG-Net possesses higher
average completion precision than its competitors in most cases.
Moreover, the visualization results are given in Fig. 14, where our
iECG-Net can better complete the large-missing parts.

6.2 Point cloud denoising
3D imaging devices are frequently used to capture the virtual mod-
els of physical objects. These models represented by point clouds
are usually noisy due to measurement and reconstruction errors,
and should be denoised to facilitate subsequent applications. Point
cloud denoising aims to eliminate noise or spurious information
from a noisy point cloud, while preserving its real geometry.

Network framework. We leverage Pointfilter [83] as our net-
work’s backbone in Fig. 12. In our improved Pointfilter (iPoint-
filter), the original encoder is replaced by the AGConv mod-
ule. iPointfilter takes the noisy point as input, and outputs a
displacement vector to move this noisy point to the underlying
(noise-free) surface. The encoder attempts to obtain a complex
representation for the input patch, and is mainly composed of two
parts, a feature extractor to obtain features of different scales from
the neighborhood, and a collector to aggregate the features as a
latent vector. The extractor and collector are implemented by our
AGConv layer and max pooling layer, respectively. The decoder
is used as a regressor to return a displacement vector of the noisy
point, which is realized by three fully connected layers.

Data. We train our iPointfilter on the benchmark dataset from
Pointfilter [83], which contains 22 clean models (11 CAD models
and 11 non-CAD models). Each model is generated from a random
sampling of 100K points from the original surface. The clean
models are then perturbed by Gaussian noise with the standard
deviations from 0.0% to 2.5% of the bounding box’s diagonal

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

Methods MSE(10−3) CD(10−5)

Noisy 44.77 104.12
Pointfilter 42.31 62.35
DGCNN 42.26 59.07

Ours 40.19 44.96

TABLE 11
Average errors of all filtered point clouds over our test synthetic

models(20 models with 0.5% noise).

49.13/112.61

16.33/13.46

50.27/118.64

17.82/17.58

45.95/77.9546.79/82.51

16.13/13.24 15.87/12.93

48.20/125.97 45.61/85.3545.82/96.6753.37/191.24

(a) Input

MSEs/CDs

MSEs/CDs

MSEs/CDs
(b) Pointfilter (c) DGCNN (d) Ours (e) GT

Fig. 13. Visual comparisons of point clouds with 0.5% noise (left: MSEs
(10−3), right: CDs (10−5)).

length. The training set consists of 132 models. In addition to the
(x,y,z) coordinate of each point, the point normals of clean models
are also required for training. To test the model, we randomly
selected 20 models from the dataset of [84] and added different
levels of Gaussian noise onto them.

Comparison. To evaluate the effectiveness of iPointfilter, we
replace the encoder of Pointfilter with DGCNN [12]. As shown
in Fig. 13, our methods can produce more evenly distributed
results on the first two models and maintain more sharp features
on the third models than the results of Pointfilter [83] and DGCNN
[12].To comprehensively evaluate our iPointfiler, We also calculate
the mean square error(MSE) and the chamfer distance(CD) over
the 20 synthetic models in the test set. Table 11 shows our method
averagely achieves the lowest errors.

6.3 Point cloud upsampling
Point cloud upsampling aims to generate dense point clouds from
their sparse input. The generated data should recover the fine-
grained structures at a higher resolution, and the upsampled points
are expected to uniformly lie on the underlying surface.

Network framework. We leverage PU-Transformer [85] as our
network’s backbone in Fig. 15. In our improved PU-Transformer
(iPU-Transformer), we add the AGConv module in the upsampling
head. Given a sparse point cloud P ∈ RN×3 as input, iPU-
Transformer can generate a dense point cloud Q ∈ RrN×3,
where r denotes the upsampling scale. In Fig. 15, we first exploit

Fig. 14. Visualization of completion results on Shapenet-Part (4 cate-
gories: Car, Laptop, Table, and Chair).

AGConv and MLP to construct the upsampling head, which
extracts a preliminary feature map from the input. Then, based on
the feature map and the inherent 3D coordinates, the upsampling
body gradually encodes a more comprehensive feature map via
the cascaded Transformer encoders. Finally, in the upsampling
tail, the shuffle operation [86] is used to form a dense feature map
and reconstruct the 3D coordinates of Q via an MLP.

Data. We train and test iPU-Transformer on the PU1K dataset in
PU-GCN [87]. PU1K covers 50 object categories, in which 1,020
3D meshes are used for training and 127 ones for testing. To
match the patch-based upsampling methods, the training data is
generated from patches of 3D meshes via Poisson disk sampling.
Specifically, the training data includes a total of 69,000 samples
(patches), where each sample has 256 points (low resolution) and a
corresponding ground-truth of 1,024 points (4× high resolution).

Results. We follow the common way utilized in PU-Net [88],
PU-GCN [87], and PU-Transformer [85]. To be specific, we first
cut the input point cloud into multiple seed patches covering
all N points. Then, we apply our trained model to upsample
the seed patches with a scale of r. Finally, the farthest point
sampling algorithm is used to combine all upsampled patches as
a dense output point cloud with rN points. We test the point
clouds with 2,048 points for the 4× upsampling experiments.
We quantitatively evaluate the upsampling performance of PU-
Net [88], PU-GCN [87], PU-Transformer [85] and our method in
Tab. 13 based on three widely used metrics: (i) Chamfer distance
(CD), (ii) Hausdorff distance (HD), and (iii) Point-to-Surface
distance (P2F). iPU-Transformer obtains a lower value under these
metrics than its competitors. Moreover, we visually compare our

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

Category LGAN-AE PCN 3D-Capsule TopNet MSN PF-Net ECG-Net AGConv(Ours)
Airplane 2.814 2.626 2.991 2.251 1.698 0.984 1.095 1.010

Bag 8.837 8.673 8.492 7.887 9.745 3.543 3.995 4.121
Cap 7.609 7.126 7.706 6.524 5.491 5.473 4.668 3.576
Car 5.416 5.789 6.236 5.514 5.716 2.390 2.496 2.356

Chair 4.787 4.153 4.045 3.597 3.072 2.053 2.124 1.916
Guitar 1.251 1.113 1.294 0.976 0.836 0.407 0.478 0.442
Lamp 7.476 6.918 7.669 6.534 3.517 4.185 3.467 3.182
Laptop 3.376 3.262 3.627 2.671 1.619 1.448 1.408 1.348

Motorbike 4.156 4.012 4.048 3.546 2.963 1.923 2.034 1.888
Mug 6.516 6.845 7.051 6.781 8.795 3.377 3.775 3.478
Pistol 3.261 3.163 3.212 2.620 1.647 1.381 1.237 1.271

Skateboard 3.022 2.906 3.346 2.717 1.760 1.327 1.354 1.247
Table 4.781 4.746 5.157 4.036 4.342 2.053 1.982 1.922
Mean 4.869 4.717 4.990 4.281 3.938 2.349 2.316 2.135

TABLE 12
Completion results on Shapenet-Part with 13 categories by the CD. The last row show the mean CD loss of all these categories, scaled by 1000.

MLP Transformer
Encoder

…
1 … 𝐿𝐿

Transformer
Encoder Shuffle MLP

Upsampling Head Upsampling Body Upsampling Tail

AGConv

N×3 rN×3

Fig. 15. PU-Transformer [85] is improved by our AGConv for point cloud upsampling (call iPU-Transformer).

Method CD HD P2F
(×10−3) (×10−3) (×10−3)

PU-Net [88] 1.155 15.170 4.834
PU-GCN [87] 0.585 7.577 2.499

PU-Transformer [85] 0.451 3.843 1.277
Ours 0.434 3.534 1.251

TABLE 13
Quantitative comparisons on PU1K [87].

iPU-Transformer with PU-GCN [87], and PU-Transformer [85]
in Fig. 16. Benefiting from AGConv, iPU-Transformer can better
upsample point clouds, which have detailed features.

6.4 Circle extraction

Geometric primitive extraction from man-made engineering ob-
jects is essential for many practically meaningful applications,
such as reverse engineering and 3D inspection. The shape of
circle is one of the fundamental geometric primitives of man-made
engineering objects. Thus, extraction of circles from scanned point
clouds is a quite important task in geometry data processing.

Network framework. We leverage Circle-Net [21] as our net-
work’s backbone in Fig. 17. In our improved Circle-Net (iCircle-
Net), the original graph convolution module is replaced by the AG-
Conv module. iCircle-Net leverages an end-to-end classification-
and-fitting network: The circle-boundary learning module detects
all potential circle-boundary points from a raw point cloud by
considering local and global neighboring contexts of each point;
the circle parameter learning module for weighted least squares
is developed, without designing any weight metric to avoid the
influence of outliers during fitting; the two modules are co-trained

(c) PU-Transformer (d) Ours(b) PU-GCN(a) Input (e) Ground-Truth

Fig. 16. Visualization of upsampling results on models (with 2,048 points
for the 4× upsampling) from PU-GAN [84].

with a comprehensive loss to enhance the quality of extracted
circles.

First, we build two different neighborhoods, for perceiving
both local and global context information for each point. The deep
features of the two patches are then extracted by AGConv and
MLPs. Then, a transformer module is used to fuse the features of
the two patches, and the fused features are exploited to regress
each point’s label. After classification, we use a neural network to
estimate the weight of each point in the detected circle-boundary
candidate points, which will be subsequently used for weighted
least squares circle fitting.

Data. We train and evaluate our iCircle-Net in the benchmark

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

Local patch 𝑃𝑃𝑙𝑙 ∈ 𝑅𝑅𝑁𝑁×𝑘𝑘𝑙𝑙×3

Ball
query

Input 𝑃𝑃𝑁𝑁 ∈ 𝑅𝑅𝑁𝑁×3

Global patch 𝑃𝑃𝑔𝑔 ∈ 𝑅𝑅𝑁𝑁×𝑘𝑘𝑔𝑔×3

Feature
extraction

Feature
fusion

(a) Network architecture

(d) Circle boundary-
point classification

(c) Feature fusion(b) Feature extraction

FC(128,32)

FC(2)

𝑁𝑁 × 2

softmax

𝑁𝑁 × 512

Circle boundary-
point classification

WLS weight
learning

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑁𝑁 ∈ 𝑅𝑅𝑁𝑁×2

𝑊𝑊𝑁𝑁 ∈ 𝑅𝑅𝑁𝑁×1

𝑁𝑁
×
𝑘𝑘 𝑙𝑙

×
3

A
G

C
on

v

𝑁𝑁
×
𝑘𝑘 𝑙𝑙

×
51

2

M
ax

po
ol

𝑁𝑁
×

51
2

𝑁𝑁
×
𝑘𝑘 𝑔𝑔

×
3

A
G

C
on

v

𝑁𝑁
×
𝑘𝑘 𝑔𝑔

×
51

2

M
ax

 p
oo

l

𝑁𝑁
×

51
2

X

X

PCA
Alignment

M
LP

 (3
2,

64
,1

28
,

12
8,

25
6,

51
2)

M
LP

 (3
2,

64
,1

28
,

12
8,

25
6,

51
2)

𝑁𝑁
×

2
×

51
2

Norm

MLP

+
Norm

+

q k v
Multi−Head

Attention

Fig. 17. Circle-Net [21] (a classification-and-fitting network) is improved
by our AGConv for point cloud circle extraction (call iCircle-Net).

Method Precision(%) Recall(%) F1(%)

EC-Net [89] 32.60 26.82 29.43
PIE-NET [90] 77.95 69.79 73.64
Circle-Net [21] 86.06 77.62 81.58

Ours 87.33 78.24 82.54

TABLE 14
Quantitative comparisons of circle boundary detection on virtual scans.

dataset from Circle-Net [21], which contains 55 CAD models,
including curved and flat thin-walled planes with multiple circular
structures. Each CAD model is virtually scanned by a simulated
scanner, which is developed by Blender, to generate virtually
scanned data with different noise intensities and different reso-
lutions. In addition, the circular structures in CAD models have
different radii and depths, and the simulated raw data is scanned
from different views to mimic more general scanning scenarios.
The ground-truth circle primitives is extracted directly from CAD
models since the virtually scanned data is consistent with the
corresponding CAD models. Through the above schemes, the
virtual point cloud data is similar to the real-scanned. Totally,
4, 500 point clouds are created for training.

Results. To demonstrate the effectiveness of AGConv, we com-
pare iCircle-Net against several representative circle extraction
methods, including EC-Net [89], PIE-NET [90], and Circle-Net
[21]. In our experiments, we test all methods with a variety of
virtually-scanned clouds in Tab. 14. Benefiting from AGConv,
iCircle-Net possesses higher circle boundary detection precision
than its competitors. Moreover, the visualization results on several
real-scanned point clouds are given in Fig. 18, where our iCircle-
Net can obtain less detection errors.

6.5 Point cloud registration
Point cloud registration aims to find a rigid transformation to align
two point clouds.

Network framework. We utilize RGM [22] as our network’s
backbone in Fig. 19. In our improved RGM (iRGM), we replace
the original graph convolution with the proposed AGConv module.
iRGM consists of four components: a local feature extractor, an
edge generator, a graph feature extractor & AIS module, and an
LAP-SVD. First, we use the shared local feature extractor with

(c) PIE-NET (d) Circle-Net(b) EC-Net(a) Input (e) Ours

Fig. 18. Visualization of circle extraction results on six real scans.

Fig. 19. RGM [22] is improved by our AGConv for point cloud registration
(called iRGM).

AGConv to extract discriminative features for each point in X and
Y. Then, the edge generator produces edges and builds both the
source graph and target graph, and the graphs are inputted into the
graph feature extractor. The AIS module predicts the soft corre-
spondence matrix C̃ between nodes of the two graphs. Finally, the
soft correspondences are converted to hard correspondences using
the LAP solver, and the transformation is solved by SVD. We also
update the transformation iteratively, similar to ICP.

Data. All experiments of our iRGM are conducted on Model-
Net40 [24], which includes 12,311 meshed CAD models from
40 categories. Following RGM [22], we randomly sample 2,048
points from the mesh faces and re-scale the points into a unit
sphere. Each category consists of official train/test splits. To select
models for evaluation, we take 80% and 20% of the official train
split as the training set and validation set, respectively, and the
official test split for testing. For each object in the dataset, we
randomly sample 1,024 points as the source point cloud X, and
then apply a random transformation on X to obtain the target
point cloud Y and shuffle the point order. For the transformation
applied, we randomly sample three Euler angles in the range

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 15

Fig. 20. Visualization of point cloud registration on ModelNet40 [24].

Method MAE(R) MAE(t) MIE(R) MIE(t)

RPM-Net [91] 0.869 0.0082 1.711 0.0175
RGM [22] 0.541 0.0046 1.032 0.0096

Ours 0.493 0.0041 0.967 0.0088

TABLE 15
Quantitative comparisons of registration methods on ModelNet40 [24].

of [0, 45]
◦ for rotation and three displacements in the range of

[−0.5, 0.5] along each axis for translation. Moreover, we focus
on the challenging partial-to-partial case, which occurs frequently
in real-world applications. In order to generate partial overlapping
pairs, we create a random plane passing through each point cloud
independently, translate it along its normal, and retain 70% of the
points as RPM-Net [91].

Results. To demonstrate the effectiveness of AGConv, we compare
iRGM against two SOTAs, including RPM-Net [91] and RGM
[22]. In our experiments, we train all methods in the same way and
evaluate their performance over four metrics: the mean isotropic
errors (MIE) of rotation and translation, and the mean absolute
errors (MAE) of rotation and translation, as shown in Tab. 15.
The robust features extracted by AGConv boost the performance
of iRGM, which surpass the two methods over all metrics. The
visualization results are given in Fig. 20, it is obvious that our
iRGM aligns two point clouds more accurately.

7 CONCLUSION

Deep learning on 2D images has boomed because of its superiority
in solving computer vision tasks. Deep learning on 3D point
clouds has also drawn much interests in recent years. However, it
is still far from being satisfactory to leverage the potential of deep
learning for understanding point clouds. In this paper, we propose
a novel adaptive graph convolution (AGConv) for point cloud
analysis. The main contribution of our method lies in the designed
adaptive kernel in the graph convolution, which is dynamically
generated according to the point features. Instead of using a fixed
kernel that captures correspondences indistinguishably between
points, our AGConv can produce learned features that are more
flexible to shape geometric structures. We have applied AGConv

to train end-to-end deep networks for several point cloud analysis
tasks, including the low-level geometry processing tasks, i.e.,
completion, denoising, upsampling and registration, and the high-
level geometry processing tasks, i.e., classification, segmentation
and circle extraction. In all these tasks, AGConv outperforms
the state-of-the-arts on the benchmark datasets. Collecting-and-
annotating large-scale point clouds is time-consuming and expen-
sive. To alleviate it, we attempt to propose unsupervised learning
approaches to learn features from unlabeled point cloud datasets
by AGConv and geometry domain knowledge in future.

Fig. 21. More part segmentation results on ShapeNet by our AGConv-
based segmentation network.

REFERENCES

[1] L. Jiang, J. Zhang, and B. Deng, “Robust RGB-D face recognition using
attribute-aware loss,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 42,
no. 10, pp. 2552–2566, 2020.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 16

[2] W. Feng, J. Li, H. Cai, X. Luo, and J. Zhang, “Neural points: Point cloud
representation with neural fields,” CoRR, vol. abs/2112.04148, 2021.

[3] C. Yi, D. Lu, Q. Xie, S. Liu, H. Li, M. Wei, and J. Wang, “Hierarchical
tunnel modeling from 3d raw lidar point cloud,” Comput. Aided Des.,
vol. 114, pp. 143–154, 2019.

[4] Q. Wu, H. Yang, M. Wei, O. Remil, B. Wang, and J. Wang, “Automatic
3d reconstruction of electrical substation scene from lidar point cloud,”
ISPRS Journal of Photogrammetry and Remote Sensing, vol. 143, pp.
57–71, 2018.

[5] M. Guo, J. Cai, Z. Liu, T. Mu, R. R. Martin, and S. Hu, “PCT: point cloud
transformer,” Comput. Vis. Media, vol. 7, no. 2, pp. 187–199, 2021.

[6] Y. Guo, H. Wang, Q. Hu, H. Liu, L. Liu, and M. Bennamoun, “Deep
learning for 3d point clouds: A survey,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 43, no. 12, pp. 4338–4364, 2021.

[7] G. Riegler, A. Osman Ulusoy, and A. Geiger, “Octnet: Learning deep
3d representations at high resolutions,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2017, pp. 3577–
3586.

[8] H. Zhou, H. Chen, Y. Feng, Q. Wang, J. Qin, H. Xie, F. L. Wang, M. Wei,
and J. Wang, “Geometry and learning co-supported normal estimation for
unstructured point cloud,” in 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2020, pp. 13 235–13 244.

[9] Z. Li, Y. Zhang, Y. Feng, X. Xie, Q. Wang, M. Wei, and P. Heng,
“Normalf-net: Normal filtering neural network for feature-preserving
mesh denoising,” Comput. Aided Des., vol. 127, p. 102861, 2020.

[10] H. Zhou, H. Chen, Y. Zhang, M. Wei, H. Xie, J. Wang, T. Lu, J. Qin, and
X.-P. Zhang, “Refine-net: Normal refinement neural network for noisy
point clouds,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 00, no. 00,
pp. 1–18, 2022.

[11] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning
on point sets for 3d classification and segmentation,” in 2017 IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2017,
Honolulu, HI, USA, July 21-26, 2017, 2017, pp. 77–85.

[12] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M.
Solomon, “Dynamic graph cnn for learning on point clouds,” Acm
Transactions On Graphics (tog), vol. 38, no. 5, pp. 1–12, 2019.

[13] Z.-H. Lin, S.-Y. Huang, and Y.-C. F. Wang, “Convolution in the cloud:
Learning deformable kernels in 3d graph convolution networks for
point cloud analysis,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2020, pp. 1800–1809.

[14] L. Wang, Y. Huang, Y. Hou, S. Zhang, and J. Shan, “Graph attention
convolution for point cloud semantic segmentation,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2019, pp. 10 296–10 305.

[15] K. Fujiwara and T. Hashimoto, “Neural implicit embedding for point
cloud analysis,” in Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, 2020, pp. 11 734–11 743.

[16] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Ben-
gio, “Graph attention networks,” arXiv preprint arXiv:1710.10903, 2017.

[17] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” arXiv preprint arXiv:1409.0473,
2014.

[18] J. Gehring, M. Auli, D. Grangier, and Y. N. Dauphin, “A convolu-
tional encoder model for neural machine translation,” arXiv preprint
arXiv:1611.02344, 2016.

[19] H. Zhou, Y. Feng, M. Fang, M. Wei, J. Qin, and T. Lu, “Adaptive graph
convolution for point cloud analysis,” in ICCV, 2021, pp. 4965–4974.

[20] L. Pan, “Ecg: Edge-aware point cloud completion with graph convolu-
tion,” IEEE Robotics and Automation Letters, vol. 5, no. 3, pp. 4392–
4398, 2020.

[21] H. Chen, Z. Wei, Q. Xie, M. Wei, and J. Wang, “Method for extracting
multiple circle primitives extraction of aircraft surface based on 3d point
cloud deep learning,” JOURNAL OF MECHANICAL ENGINEERING.

[22] K. Fu, S. Liu, X. Luo, and M. Wang, “Robust point cloud registration
framework based on deep graph matching,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2021, pp. 8893–8902.

[23] D. Maturana and S. Scherer, “Voxnet: A 3d convolutional neural net-
work for real-time object recognition,” in 2015 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2015, pp.
922–928.

[24] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao, “3d
shapenets: A deep representation for volumetric shapes,” in Proceedings
of the IEEE conference on computer vision and pattern recognition, 2015,
pp. 1912–1920.

[25] T. Le and Y. Duan, “Pointgrid: A deep network for 3d shape understand-
ing,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2018, pp. 9204–9214.

[26] P.-S. Wang, Y. Liu, Y.-X. Guo, C.-Y. Sun, and X. Tong, “O-cnn:
Octree-based convolutional neural networks for 3d shape analysis,” ACM
Transactions On Graphics (TOG), vol. 36, no. 4, pp. 1–11, 2017.

[27] R. Klokov and V. Lempitsky, “Escape from cells: Deep kd-networks for
the recognition of 3d point cloud models,” in Proceedings of the IEEE
International Conference on Computer Vision, 2017, pp. 863–872.

[28] E. Kalogerakis, M. Averkiou, S. Maji, and S. Chaudhuri, “3d shape
segmentation with projective convolutional networks,” in proceedings of
the IEEE conference on computer vision and pattern recognition, 2017,
pp. 3779–3788.

[29] H. Su, S. Maji, E. Kalogerakis, and E. Learned-Miller, “Multi-view
convolutional neural networks for 3d shape recognition,” in Proceedings
of the IEEE international conference on computer vision, 2015, pp. 945–
953.

[30] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “Pointnet++: Deep hierar-
chical feature learning on point sets in a metric space,” arXiv preprint
arXiv:1706.02413, 2017.

[31] Q. Huang, W. Wang, and U. Neumann, “Recurrent slice networks for 3d
segmentation of point clouds,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2018, pp. 2626–2635.

[32] M. Gadelha, R. Wang, and S. Maji, “Multiresolution tree networks for
3d point cloud processing,” in Proceedings of the European Conference
on Computer Vision (ECCV), 2018, pp. 103–118.

[33] Y. Li, R. Bu, M. Sun, W. Wu, X. Di, and B. Chen, “Pointcnn: Convolution
on χ-transformed points,” in Proceedings of the 32nd International
Conference on Neural Information Processing Systems, 2018, pp. 828–
838.

[34] Y. Xu, T. Fan, M. Xu, L. Zeng, and Y. Qiao, “Spidercnn: Deep learning
on point sets with parameterized convolutional filters,” in Proceedings
of the European Conference on Computer Vision (ECCV), 2018, pp. 87–
102.

[35] M. Atzmon, H. Maron, and Y. Lipman, “Point convolutional neural
networks by extension operators,” arXiv preprint arXiv:1803.10091,
2018.

[36] H. Thomas, C. R. Qi, J.-E. Deschaud, B. Marcotegui, F. Goulette, and
L. J. Guibas, “Kpconv: Flexible and deformable convolution for point
clouds,” in Proceedings of the IEEE/CVF International Conference on
Computer Vision, 2019, pp. 6411–6420.

[37] Y. Liu, B. Fan, S. Xiang, and C. Pan, “Relation-shape convolutional
neural network for point cloud analysis,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2019, pp.
8895–8904.

[38] Z. Zhang, B.-S. Hua, and S.-K. Yeung, “Shellnet: Efficient point cloud
convolutional neural networks using concentric shells statistics,” in
Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2019, pp. 1607–1616.

[39] H. Zhao, L. Jiang, J. Jia, P. Torr, and V. Koltun, “Point transformer,”
arXiv preprint arXiv:2012.09164, 2020.

[40] M.-H. Guo, J.-X. Cai, Z.-N. Liu, T.-J. Mu, R. R. Martin, and S.-M. Hu,
“Pct: Point cloud transformer,” arXiv preprint arXiv:2012.09688, 2020.

[41] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” arXiv preprint
arXiv:1706.03762, 2017.

[42] F. Wu, A. Fan, A. Baevski, Y. N. Dauphin, and M. Auli, “Pay less
attention with lightweight and dynamic convolutions,” arXiv preprint
arXiv:1901.10430, 2019.

[43] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[44] Y. Shen, C. Feng, Y. Yang, and D. Tian, “Mining point cloud local
structures by kernel correlation and graph pooling,” in Proceedings of
the IEEE conference on computer vision and pattern recognition, 2018,
pp. 4548–4557.

[45] B.-S. Hua, M.-K. Tran, and S.-K. Yeung, “Pointwise convolutional neural
networks,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2018, pp. 984–993.

[46] H. Lei, N. Akhtar, and A. Mian, “Spherical kernel for efficient graph
convolution on 3d point clouds,” IEEE transactions on pattern analysis
and machine intelligence, 2020.

[47] F. Monti, D. Boscaini, J. Masci, E. Rodola, J. Svoboda, and M. M.
Bronstein, “Geometric deep learning on graphs and manifolds using
mixture model cnns,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2017, pp. 5115–5124.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 17

[48] N. Verma, E. Boyer, and J. Verbeek, “Feastnet: Feature-steered graph
convolutions for 3d shape analysis,” in Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, 2018, pp. 2598–2606.

[49] M. Lin and A. Feragen, “diffconv: Analyzing irregular point clouds with
an irregular view,” CoRR, vol. abs/2111.14658, 2021.

[50] F. Pistilli, G. Fracastoro, D. Valsesia, and E. Magli, “Learning graph-
convolutional representations for point cloud denoising,” in European
Conference on Computer Vision. Springer, 2020, pp. 103–118.

[51] R. Hanocka, A. Hertz, N. Fish, R. Giryes, and D. Cohen-Or, “Meshcnn:
A network with an edge,” ACM Transactions on Graphics, vol. 38, pp.
1–12, 2018.

[52] S. Hu, Z. Liu, M. Guo, J. Cai, J. Huang, T. Mu, and R. R. Martin,
“Subdivision-based mesh convolution networks,” arXiv:2106.02285v1,
pp. 1–15, 2021.

[53] Y. Feng, Y. Feng, H. You, X. Zhao, and G. Yue, “Meshnet: Mesh neural
network for 3d shape representation,” p. 8279–8286, 2018.

[54] S. Gong, L. Chen, M. Bronstein, and S. Zafeiriou, “Spiralnet++: A
fast and highly efficient mesh convolution operator,” in 2019 IEEE/CVF
International Conference on Computer Vision Workshop (ICCVW), 2020,
p. 4141–4148.

[55] M. Simonovsky and N. Komodakis, “Dynamic edge-conditioned filters
in convolutional neural networks on graphs,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2017, pp. 3693–
3702.

[56] W. Wu, Z. Qi, and L. Fuxin, “Pointconv: Deep convolutional networks
on 3d point clouds,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2019, pp. 9621–9630.

[57] X. Jia, B. De Brabandere, T. Tuytelaars, and L. V. Gool, “Dynamic filter
networks,” Advances in neural information processing systems, vol. 29,
pp. 667–675, 2016.

[58] M. Jaderberg, K. Simonyan, A. Zisserman, and K. Kavukcuoglu, “Spatial
transformer networks,” arXiv preprint arXiv:1506.02025, 2015.

[59] C. R. Qi, H. Su, M. Nießner, A. Dai, M. Yan, and L. J. Guibas,
“Volumetric and multi-view cnns for object classification on 3d data,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2016, pp. 5648–5656.

[60] C. Wang, B. Samari, and K. Siddiqi, “Local spectral graph convolution
for point set feature learning,” in Proceedings of the European conference
on computer vision (ECCV), 2018, pp. 52–66.

[61] J. Li, B. M. Chen, and G. H. Lee, “So-net: Self-organizing network
for point cloud analysis,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2018, pp. 9397–9406.

[62] X. Yan, C. Zheng, Z. Li, S. Wang, and S. Cui, “Pointasnl: Robust
point clouds processing using nonlocal neural networks with adaptive
sampling,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2020, pp. 5589–5598.

[63] I. Loshchilov and F. Hutter, “Sgdr: Stochastic gradient descent with warm
restarts,” arXiv preprint arXiv:1608.03983, 2016.

[64] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An
imperative style, high-performance deep learning library,” arXiv preprint
arXiv:1912.01703, 2019.

[65] L. Yi, V. G. Kim, D. Ceylan, I.-C. Shen, M. Yan, H. Su, C. Lu, Q. Huang,
A. Sheffer, and L. Guibas, “A scalable active framework for region
annotation in 3d shape collections,” ACM Transactions on Graphics
(ToG), vol. 35, no. 6, pp. 1–12, 2016.

[66] L. Tchapmi, C. Choy, I. Armeni, J. Gwak, and S. Savarese, “Segcloud:
Semantic segmentation of 3d point clouds,” in 2017 international con-
ference on 3D vision (3DV). IEEE, 2017, pp. 537–547.

[67] S. Wang, S. Suo, W.-C. Ma, A. Pokrovsky, and R. Urtasun, “Deep
parametric continuous convolutional neural networks,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2018, pp. 2589–2597.

[68] H. Zhao, L. Jiang, C.-W. Fu, and J. Jia, “Pointweb: Enhancing local
neighborhood features for point cloud processing,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2019, pp. 5565–5573.

[69] L. Jiang, H. Zhao, S. Liu, X. Shen, C.-W. Fu, and J. Jia, “Hierarchical
point-edge interaction network for point cloud semantic segmentation,”
in Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2019, pp. 10 433–10 441.

[70] H. Thomas, F. Goulette, J.-E. Deschaud, B. Marcotegui, and Y. LeGall,
“Semantic classification of 3d point clouds with multiscale spherical
neighborhoods,” in 2018 International conference on 3D vision (3DV).
IEEE, 2018, pp. 390–398.

[71] Z. Liang, M. Yang, L. Deng, C. Wang, and B. Wang, “Hierarchical
depthwise graph convolutional neural network for 3d semantic segmenta-

tion of point clouds,” in 2019 International Conference on Robotics and
Automation (ICRA). IEEE, 2019, pp. 8152–8158.

[72] X. Roynard, J.-E. Deschaud, and F. Goulette, “Classification of point
cloud for road scene understanding with multiscale voxel deep network,”
in 10th workshop on Planning, Perception and Navigation for Intelligent
Vehicules PPNIV’2018, 2018.

[73] H. Thomas, F. Goulette, J.-E. Deschaud, B. Marcotegui, and Y. LeGall,
“Semantic classification of 3d point clouds with multiscale spherical
neighborhoods,” in 2018 International conference on 3D vision (3DV).
IEEE, 2018, pp. 390–398.

[74] A. Boulch, “Convpoint: Continuous convolutions for point cloud pro-
cessing,” Computers & Graphics, vol. 88, pp. 24–34, 2020.

[75] I. Armeni, O. Sener, A. R. Zamir, H. Jiang, I. Brilakis, M. Fischer,
and S. Savarese, “3d semantic parsing of large-scale indoor spaces,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2016, pp. 1534–1543.

[76] L. Landrieu and M. Simonovsky, “Large-scale point cloud semantic
segmentation with superpoint graphs,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2018, pp.
4558–4567.

[77] W. Yuan, T. Khot, D. Held, C. Mertz, and M. Hebert, “Pcn: Point
completion network,” in 2018 International Conference on 3D Vision
(3DV). IEEE, 2018, pp. 728–737.

[78] C.-H. Lin, C. Kong, and S. Lucey, “Learning efficient point cloud
generation for dense 3d object reconstruction,” in proceedings of the
AAAI Conference on Artificial Intelligence, vol. 32, no. 1, 2018.

[79] Y. Zhao, T. Birdal, H. Deng, and F. Tombari, “3d point capsule networks,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2019, pp. 1009–1018.

[80] L. P. Tchapmi, V. Kosaraju, H. Rezatofighi, I. Reid, and S. Savarese,
“Topnet: Structural point cloud decoder,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2019, pp. 383–392.

[81] M. Liu, L. Sheng, S. Yang, J. Shao, and S.-M. Hu, “Morphing and
sampling network for dense point cloud completion,” in Proceedings of
the AAAI conference on artificial intelligence, vol. 34, no. 07, 2020, pp.
11 596–11 603.

[82] Z. Huang, Y. Yu, J. Xu, F. Ni, and X. Le, “Pf-net: Point fractal network for
3d point cloud completion,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2020, pp. 7662–7670.

[83] D. Zhang, X. Lu, H. Qin, and Y. He, “Pointfilter: Point cloud filtering
via encoder-decoder modeling,” IEEE Transactions on Visualization and
Computer Graphics, vol. 27, no. 3, pp. 2015–2027, 2021.

[84] R. Li, X. Li, C. W. Fu, D. Cohen-Or, and P. A. Heng, “Pu-gan: A point
cloud upsampling adversarial network,” The Chinese University of Hong
Kong; Tel Aviv University; The Chinese Univsersity of Hong Kong.

[85] S. Qiu, S. Anwar, and N. Barnes, “Pu-transformer: Point cloud upsam-
pling transformer,” arXiv e-prints, 2021.

[86] W. Shi, J. Caballero, F. Huszár, J. Totz, and Z. Wang, “Real-time
single image and video super-resolution using an efficient sub-pixel
convolutional neural network,” IEEE, 2016.

[87] G. Qian, A. Abualshour, G. Li, A. Thabet, and B. Ghanem, “Pu-gcn:
Point cloud upsampling using graph convolutional networks,” 2019.

[88] L. Yu, X. Li, C. W. Fu, D. Cohen-Or, and P. A. Heng, “Pu-net: Point
cloud upsampling network,” IEEE, 2018.

[89] L. Yu, X. Li, C.-W. Fu, D. Cohen-Or, and P.-A. Heng, “Ec-net: an edge-
aware point set consolidation network,” in Proceedings of the European
Conference on Computer Vision (ECCV), 2018, pp. 386–402.

[90] X. Wang, Y. Xu, K. Xu, A. Tagliasacchi, B. Zhou, A. Mahdavi-Amiri,
and H. Zhang, “Pie-net: Parametric inference of point cloud edges,” arXiv
preprint arXiv:2007.04883, 2020.

[91] Z. J. Yew and G. H. Lee, “Rpm-net: Robust point matching using learned
features,” in Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, 2020, pp. 11 824–11 833.

